3d激光slam建图与定位(2)_aloam代码阅读

这篇具有很好参考价值的文章主要介绍了3d激光slam建图与定位(2)_aloam代码阅读。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.常用的几种loam算法
aloam 纯激光
lego_loam 纯激光 去除了地面
lio_sam imu+激光紧耦合
lvi_sam 激光+视觉
2.代码思路
2.1.特征点提取scanRegistration.cpp,这个文件的目的是为了根据曲率提取4种特征点和对当前点云进行预处理
输入是雷达点云话题
输出是 4种特征点点云和预处理后的当前点云
(1)带有点云线束id+在角度范围所处进度的全部有效点点云(因为雷达是旋转的,雷达旋转的进度)
(2)曲率比较大的特征点点云,对每条线6等分之后每段2个点
(3)曲率一般大的特征点点云,对每条线6等分之后每段20个点
(4)曲率比较小的面点点云
(5)一般面点点云,角点提取剩下的那些点
当输入雷达是16线雷达,去计算是哪条线id是通过计算俯仰角每2度算一根线去计算的
角度所处的进度,是根据水平角计算获得的
2.1.1选择雷达扫描半径范围内的点

 pcl::PointCloud<pcl::PointXYZ> narrowed_scan;
    narrowed_scan.header = scan.header;

    if (min_range >= max_range)
    {
        ROS_ERROR_ONCE("min_range>=max_range @(%lf, %lf)", min_range, max_range);
        return scan;
    }

    double square_min_range = min_range * min_range;
    double square_max_range = max_range * max_range;

    for (pcl::PointCloud<pcl::PointXYZ>::const_iterator iter = scan.begin(); iter != scan.end(); ++iter)
    {
        const pcl::PointXYZ &p = *iter;
        // 点云点到原点的位置的欧式距离
        double square_distance = p.x * p.x + p.y * p.y;

        if (square_min_range <= square_distance && square_distance <= square_max_range)
        {
            narrowed_scan.points.push_back(p);
        }
    }

    return narrowed_scan;

2.1.2计算水平角角度范围

 int cloudSize = laserCloudIn.points.size();
// 起始点角度    atan2范围是-pi~pi
float startOri = -atan2(laserCloudIn.points[0].y, laserCloudIn.points[0].x);
// 终止点角度
float endOri = -atan2(laserCloudIn.points[cloudSize - 1].y,
                      laserCloudIn.points[cloudSize - 1].x) +
               2 * M_PI;
// 总有些例外 ,比如这里大于3pi 和小于pi 就要做一些调整到合理的范围
if (endOri - startOri > 3 * M_PI)
{
    endOri -= 2 * M_PI;
}
else if (endOri - startOri < M_PI)
{
    endOri += 2 * M_PI;
}
Eigen::Vector2f anglerange;
anglerange[0] = startOri;
anglerange[1] = endOri;
return anglerange;

2.1.3每条线上点的计算范围

// 计算的范围 起始点是从第5个点开始 终止点是倒数第6个点
for (int i = 0; i < N_SCANS; i++)
{
    // 第一根线就是 0+5
    scanStartInd[i] = laserCloud->size() + 5;
    *laserCloud += laserCloudScans[i];
    // 第一根线就是第一根线的点数量-6
    scanEndInd[i] = laserCloud->size() - 6;
}

2.1.4计算每个点的曲率

  // 开始计算曲率
    for (int i = 5; i < cloudSize - 5; i++)
    {
        // 每一小段计算了弧长
        float diffX = laserCloud->points[i - 5].x + laserCloud->points[i - 4].x + laserCloud->points[i - 3].x + laserCloud->points[i - 2].x + laserCloud->points[i - 1].x - 10 * laserCloud->points[i].x + laserCloud->points[i + 1].x + laserCloud->points[i + 2].x + laserCloud->points[i + 3].x + laserCloud->points[i + 4].x + laserCloud->points[i + 5].x;
        float diffY = laserCloud->points[i - 5].y + laserCloud->points[i - 4].y + laserCloud->points[i - 3].y + laserCloud->points[i - 2].y + laserCloud->points[i - 1].y - 10 * laserCloud->points[i].y + laserCloud->points[i + 1].y + laserCloud->points[i + 2].y + laserCloud->points[i + 3].y + laserCloud->points[i + 4].y + laserCloud->points[i + 5].y;
        float diffZ = laserCloud->points[i - 5].z + laserCloud->points[i - 4].z + laserCloud->points[i - 3].z + laserCloud->points[i - 2].z + laserCloud->points[i - 1].z - 10 * laserCloud->points[i].z + laserCloud->points[i + 1].z + laserCloud->points[i + 2].z + laserCloud->points[i + 3].z + laserCloud->points[i + 4].z + laserCloud->points[i + 5].z;
        // 存储起始+5到终止-6每个点对应的曲率
        cloudCurvature[i] = diffX * diffX + diffY * diffY + diffZ * diffZ;
        // 每个点的索引
        cloudSortInd[i] = i;
        // 标记
        cloudNeighborPicked[i] = 0;
        cloudLabel[i] = 0;
    }

2.1.4对每个点的曲率进行排序

   float t_q_sort = 0;
// 遍历每个scan
for (int i = 0; i < N_SCANS; i++)
{
    // 点云点数小于6个就认为 没有有效的点 就进行continue
    if (scanEndInd[i] - scanStartInd[i] < 6)
    {

        continue;
    }
    // 用来存储不太平整的点
    pcl::PointCloud<PointType>::Ptr surfPointsLessFlatScan(new pcl::PointCloud<PointType>);
    // 将每个scan分成6等分
    for (int j = 0; j < 6; j++)
    {
        // 每个等分的起点和结束点
        // 起点id
        int sp = scanStartInd[i] + (scanEndInd[i] - scanStartInd[i]) * j / 6;
        // 结束点id
        int ep = scanStartInd[i] + (scanEndInd[i] - scanStartInd[i]) * (j + 1) / 6 - 1;

        TicToc t_tmp;
        // 对点云曲率进行索引排序,小的在前,大的在后
        std::sort(cloudSortInd + sp, cloudSortInd + ep + 1, comp);
        t_q_sort += t_tmp.toc();

        int largestPickedNum = 0;
        // 挑选曲率比较大的部分
        for (int k = ep; k >= sp; k--)
        {
            // 排序后顺序就乱了,这个时候索引的作用就体现出来了
            int ind = cloudSortInd[k];
            // 看看这个点是否是有效点,同时曲率是否大于阈值
            if (cloudNeighborPicked[ind] == 0 &&
                cloudCurvature[ind] > 0.1)
            {

                largestPickedNum++;
                // //目的是为了当前帧大曲率的点和上一帧小一点曲率的点建立约束
                //    每段选两个曲率大的点
                if (largestPickedNum <= 2)
                {
                    cloudLabel[ind] = 2;
                    // cornerPointsSharp存放大曲率的点
                    cornerPointsSharp.push_back(laserCloud->points[ind]);
                    cornerPointsLessSharp.push_back(laserCloud->points[ind]);
                }
                // 以及20个曲率稍微大一点的点
                else if (largestPickedNum <= 20)
                {
                    // label置1表示曲率稍微大一点的点
                    cloudLabel[ind] = 1;
                    cornerPointsLessSharp.push_back(laserCloud->points[ind]);
                }
                // 超过20个就算了
                else
                {
                    break;
                }
                // 这个点被选中了,pick标志位置1
                cloudNeighborPicked[ind] = 1;
                // 为了保证特征点不过渡集中,将选中的点周围5个点都置为1,避免后续会选到
                for (int l = 1; l <= 5; l++)
                {
                    // 查看相邻点距离是否差异过大,如果差异过大说明点云在此不连续,是特征边缘,就会是新的特征,因此就不置位了
                    float diffX = laserCloud->points[ind + l].x - laserCloud->points[ind + l - 1].x;
                    float diffY = laserCloud->points[ind + l].y - laserCloud->points[ind + l - 1].y;
                    float diffZ = laserCloud->points[ind + l].z - laserCloud->points[ind + l - 1].z;
                    if (diffX * diffX + diffY * diffY + diffZ * diffZ > 0.05)
                    {
                        break;
                    }

                    cloudNeighborPicked[ind + l] = 1;
                }
                // 下面同理
                for (int l = -1; l >= -5; l--)
                {
                    float diffX = laserCloud->points[ind + l].x - laserCloud->points[ind + l + 1].x;
                    float diffY = laserCloud->points[ind + l].y - laserCloud->points[ind + l + 1].y;
                    float diffZ = laserCloud->points[ind + l].z - laserCloud->points[ind + l + 1].z;
                    if (diffX * diffX + diffY * diffY + diffZ * diffZ > 0.05)
                    {
                        break;
                    }

                    cloudNeighborPicked[ind + l] = 1;
                }
            }
        }
        // 下面开始挑选面点
        int smallestPickedNum = 0;
        for (int k = sp; k <= ep; k++)
        {
            int ind = cloudSortInd[k];
            // 确定这个点没有被pack 并且曲率小于阈值
            if (cloudNeighborPicked[ind] == 0 &&
                cloudCurvature[ind] < 0.1)
            {
                // -1是认为平坦的点
                cloudLabel[ind] = -1;
                surfPointsFlat.push_back(laserCloud->points[ind]);

                smallestPickedNum++;
                // 每个等分取4个比较平坦的面点
                // 这里不区分平坦和比较平坦,因为剩下的点label默认是0就是比较平坦
                if (smallestPickedNum >= 4)
                {
                    break;
                }

                cloudNeighborPicked[ind] = 1;
                // 下面同理 除非曲率在0.05-0.1之间的点 否则就要标记后5个点
                for (int l = 1; l <= 5; l++)
                {
                    float diffX = laserCloud->points[ind + l].x - laserCloud->points[ind + l - 1].x;
                    float diffY = laserCloud->points[ind + l].y - laserCloud->points[ind + l - 1].y;
                    float diffZ = laserCloud->points[ind + l].z - laserCloud->points[ind + l - 1].z;
                    if (diffX * diffX + diffY * diffY + diffZ * diffZ > 0.05)
                    {
                        break;
                    }

                    cloudNeighborPicked[ind + l] = 1;
                }
                // 标记前5个点
                for (int l = -1; l >= -5; l--)
                {
                    float diffX = laserCloud->points[ind + l].x - laserCloud->points[ind + l + 1].x;
                    float diffY = laserCloud->points[ind + l].y - laserCloud->points[ind + l + 1].y;
                    float diffZ = laserCloud->points[ind + l].z - laserCloud->points[ind + l + 1].z;
                    if (diffX * diffX + diffY * diffY + diffZ * diffZ > 0.05)
                    {
                        break;
                    }

                    cloudNeighborPicked[ind + l] = 1;
                }
            }
        }

        for (int k = sp; k <= ep; k++)
        {
            // 除了角点 其它的点都是一般平坦的点云
            if (cloudLabel[k] <= 0)
            {
                surfPointsLessFlatScan->push_back(laserCloud->points[k]);
            }
        }
    }

    pcl::PointCloud<PointType> surfPointsLessFlatScanDS;
    pcl::VoxelGrid<PointType> downSizeFilter;
    // 一般平坦的点比较多,所以这里做一个体素滤波
    downSizeFilter.setInputCloud(surfPointsLessFlatScan);
    downSizeFilter.setLeafSize(0.2, 0.2, 0.2);
    downSizeFilter.filter(surfPointsLessFlatScanDS);

    surfPointsLessFlat += surfPointsLessFlatScanDS;
}
printf("sort q time %f \n", t_q_sort);

2.1.5 发布4种特征点及插入标志的整体点云

    // 分别将当前点云 四种特征的点云发布出去
sensor_msgs::PointCloud2 laserCloudOutMsg;
// 1.整体的点云 对每个点打了标签(哪一根线id+在角度范围所处的一个进度)
pcl::toROSMsg(*laserCloud, laserCloudOutMsg);
laserCloudOutMsg.header.stamp = laserCloudMsg->header.stamp;
laserCloudOutMsg.header.frame_id = "/map";
pubLaserCloud.publish(laserCloudOutMsg);

sensor_msgs::PointCloud2 cornerPointsSharpMsg;
// 2.大曲率特征点
pcl::toROSMsg(cornerPointsSharp, cornerPointsSharpMsg);
cornerPointsSharpMsg.header.stamp = laserCloudMsg->header.stamp;
cornerPointsSharpMsg.header.frame_id = "/map";
pubCornerPointsSharp.publish(cornerPointsSharpMsg);

sensor_msgs::PointCloud2 cornerPointsLessSharpMsg;
// 3.曲率稍微大一点的特征点
pcl::toROSMsg(cornerPointsLessSharp, cornerPointsLessSharpMsg);
cornerPointsLessSharpMsg.header.stamp = laserCloudMsg->header.stamp;
cornerPointsLessSharpMsg.header.frame_id = "/map";
pubCornerPointsLessSharp.publish(cornerPointsLessSharpMsg);

sensor_msgs::PointCloud2 surfPointsFlat2;
// 4.平坦的点
pcl::toROSMsg(surfPointsFlat, surfPointsFlat2);
surfPointsFlat2.header.stamp = laserCloudMsg->header.stamp;
surfPointsFlat2.header.frame_id = "/map";
pubSurfPointsFlat.publish(surfPointsFlat2);
// 5.一般平坦的点
sensor_msgs::PointCloud2 surfPointsLessFlat2;
pcl::toROSMsg(surfPointsLessFlat, surfPointsLessFlat2);
surfPointsLessFlat2.header.stamp = laserCloudMsg->header.stamp;
surfPointsLessFlat2.header.frame_id = "/map";
pubSurfPointsLessFlat.publish(surfPointsLessFlat2);

2.2.激光里程计laserOdometry.cpp
(1)对特征点提取后的5个点云进行回调并存放到队列里,并同时转成pcl点云格式
(2)两次迭代,寻找角点约束和面点约束
(3)角点约束,首先进行雷达运动补偿,通过kdtee从上一帧中寻找距离当前帧角点最近的一个点p1,根据p1去找不同线上距离最近的点p2, 根据点到直线的垂线距离,构建残差方程给到ceres,可以求解出点到线的约束
(4)面点约束,首先进行雷达运动补偿,通过kdtee从上一帧中寻找距离当前帧角点最近的一个点p1,根据p1去找相同线上距离最近的点p2,根据p1去找不同线上距离最近的点p3,根据点到平面的距离,构建残差方程给到ceres,可以求解出点到面的约束
(5)通过两次迭代,进行ceres求解 得到最终的帧间约束结果,与之前的坐标约束进行求解,就得到了前端激光里程计
2.2.1运动补偿部分
激光雷达运动补偿:就是把所有的点补偿到某一时刻,这样就可以把本身过去100ms的点收集到一个时间点上去

void TransformToStart(PointType const *const pi, PointType *const po)
{
    // interpolation ratio
    double s;
    // 由于kitti数据集上的lidar已经做过了运动补偿,因此这里就不做具体补偿了
    if (DISTORTION)
        s = (pi->intensity - int(pi->intensity)) / SCAN_PERIOD;
    else
        s = 1.0; // s=1s说明全部补偿到点云结束的时刻
    // s = 1;
    //  所有点的操作方式都是一致的,相当于从结束时刻补偿到起始时刻
    //  这里相当于是一个匀速模型的假设
    Eigen::Quaterniond q_point_last = Eigen::Quaterniond::Identity().slerp(s, q_last_curr);
    Eigen::Vector3d t_point_last = s * t_last_curr;
    Eigen::Vector3d point(pi->x, pi->y, pi->z);
    Eigen::Vector3d un_point = q_point_last * point + t_point_last;

    po->x = un_point.x();
    po->y = un_point.y();
    po->z = un_point.z();
    po->intensity = pi->intensity;
}

根据反变换求出结束时刻的点坐标,附公式推解

void TransformToEnd(PointType const *const pi, PointType *const po)
{
    // undistort point first
    pcl::PointXYZI un_point_tmp;
    // 把所有点补偿到起始时刻
    TransformToStart(pi, &un_point_tmp);
    //再 通过反变换的方式 将起始时刻坐标系下的点 转到 结束时刻坐标系下 
    Eigen::Vector3d un_point(un_point_tmp.x, un_point_tmp.y, un_point_tmp.z);//取出起始时刻坐标系下的点
        //q_last_curr  \ t_last_curr 是结束时刻坐标系转到起始时刻坐标系 的 旋转 和 平移  
    Eigen::Vector3d point_end = q_last_curr.inverse() * (un_point - t_last_curr);//通过反变换,求得转到 结束时刻坐标系下 的点坐标

    po->x = point_end.x();
    po->y = point_end.y();
    po->z = point_end.z();

    // Remove distortion time info
    po->intensity = int(pi->intensity);
}

3d激光slam建图与定位(2)_aloam代码阅读,3d,人工智能,自动驾驶
2.2.2确保5个点云都不为空

   // 首先确保5个消息都有,有一个队列为空都不行
    if (!cornerSharpBuf.empty() && !cornerLessSharpBuf.empty() &&
        !surfFlatBuf.empty() && !surfLessFlatBuf.empty() &&
        !fullPointsBuf.empty())
    {
        return false;
    }
    else
    {
        return true;
    }

2.2.3通过比较时间戳,判断是否是同一帧

 // 分别求出队列第一个时间
    timeCornerPointsSharp = cornerSharpBuf.front()->header.stamp.toSec();
    timeCornerPointsLessSharp = cornerLessSharpBuf.front()->header.stamp.toSec();
    timeSurfPointsFlat = surfFlatBuf.front()->header.stamp.toSec();
    timeSurfPointsLessFlat = surfLessFlatBuf.front()->header.stamp.toSec();
    timeLaserCloudFullRes = fullPointsBuf.front()->header.stamp.toSec();
    // 因为同一帧时间戳是相同的,因此这里比较是否是同一帧
    if (timeCornerPointsSharp != timeLaserCloudFullRes ||
        timeCornerPointsLessSharp != timeLaserCloudFullRes ||
        timeSurfPointsFlat != timeLaserCloudFullRes ||
        timeSurfPointsLessFlat != timeLaserCloudFullRes)
    {
        printf("点云消息时间戳不同步!");
        return true;
    }
    else
    {
        return false;
    }

2.2.4传感器格式转换成点云格式

 // 分别将5个消息取出来,同时转成pcl的点云格式
mBuf.lock();
cornerPointsSharp->clear();
// 将第一根元素存放到cornerPointsSharp 就是当前的点云
pcl::fromROSMsg(*cornerSharpBuf.front(), *cornerPointsSharp);
// 移除前端的第一个元素 当前待处理的点云
cornerSharpBuf.pop();

cornerPointsLessSharp->clear();
pcl::fromROSMsg(*cornerLessSharpBuf.front(), *cornerPointsLessSharp);
cornerLessSharpBuf.pop();

surfPointsFlat->clear();
pcl::fromROSMsg(*surfFlatBuf.front(), *surfPointsFlat);
surfFlatBuf.pop();

surfPointsLessFlat->clear();
pcl::fromROSMsg(*surfLessFlatBuf.front(), *surfPointsLessFlat);
surfLessFlatBuf.pop();

laserCloudFullRes->clear();
pcl::fromROSMsg(*fullPointsBuf.front(), *laserCloudFullRes);
fullPointsBuf.pop();
mBuf.unlock();

2.2.5 点到线残差构建

 for (int i = 0; i < cornerPointsSharpNum; ++i)
{
    // 运动补偿
    TransformToStart(&(cornerPointsSharp->points[i]), &pointSel);
    // 在上一帧所有角点构成的kdtee中寻找距离当前帧最近的一个点
    kdtreeCornerLast->nearestKSearch(pointSel, 1, pointSearchInd, pointSearchSqDis);

    int closestPointInd = -1, minPointInd2 = -1;
    // 只有小于给定界限才认为是有效约束
    if (pointSearchSqDis[0] < DISTANCE_SQ_THRESHOLD)
    {
        closestPointInd = pointSearchInd[0]; // 对应的最近距离约束的索引取出来
        // 找到其所对应的线束id 线束信息隐藏在intensity中
        int closestPointScanID = int(laserCloudCornerLast->points[closestPointInd].intensity);

        double minPointSqDis2 = DISTANCE_SQ_THRESHOLD;
        // 寻找角点,在刚刚角点的id上下分别继续寻找,目的是找到最近的角点,由于其按照约束进行排序,所以就是向上找
        for (int j = closestPointInd + 1; j < (int)laserCloudCornerLast->points.size(); ++j)
        {
            // 不找同一根线束的
            if (int(laserCloudCornerLast->points[j].intensity) <= closestPointScanID)
                continue;

            // 要求找到的线束距离当前线束不能太远
            if (int(laserCloudCornerLast->points[j].intensity) > (closestPointScanID + NEARBY_SCAN))
                break;
            // 上一帧线的第2个点  到当前帧点的距离
            double pointSqDis = (laserCloudCornerLast->points[j].x - pointSel.x) *
                                    (laserCloudCornerLast->points[j].x - pointSel.x) +
                                (laserCloudCornerLast->points[j].y - pointSel.y) *
                                    (laserCloudCornerLast->points[j].y - pointSel.y) +
                                (laserCloudCornerLast->points[j].z - pointSel.z) *
                                    (laserCloudCornerLast->points[j].z - pointSel.z);

            if (pointSqDis < minPointSqDis2)
            {
                minPointSqDis2 = pointSqDis;
                minPointInd2 = j;
            }
        }

        // 同样另外一个方向寻找角点
        for (int j = closestPointInd - 1; j >= 0; --j)
        {
            if (int(laserCloudCornerLast->points[j].intensity) >= closestPointScanID)
                continue;

            if (int(laserCloudCornerLast->points[j].intensity) < (closestPointScanID - NEARBY_SCAN))
                break;

            double pointSqDis = (laserCloudCornerLast->points[j].x - pointSel.x) *
                                    (laserCloudCornerLast->points[j].x - pointSel.x) +
                                (laserCloudCornerLast->points[j].y - pointSel.y) *
                                    (laserCloudCornerLast->points[j].y - pointSel.y) +
                                (laserCloudCornerLast->points[j].z - pointSel.z) *
                                    (laserCloudCornerLast->points[j].z - pointSel.z);

            if (pointSqDis < minPointSqDis2)
            {
                // 取出当前点和上一帧的两个角点
                minPointSqDis2 = pointSqDis;
                minPointInd2 = j;
            }
        }
    }
    // 最近点所在的线束
    if (minPointInd2 >= 0)
    {
        // 当前点
        Eigen::Vector3d curr_point(cornerPointsSharp->points[i].x,
                                   cornerPointsSharp->points[i].y,
                                   cornerPointsSharp->points[i].z);
        // 距离当前点最近的上一帧的点
        Eigen::Vector3d last_point_a(laserCloudCornerLast->points[closestPointInd].x,
                                     laserCloudCornerLast->points[closestPointInd].y,
                                     laserCloudCornerLast->points[closestPointInd].z);
        // 距离上一帧点最近的不同线束上的第二个点 构成棱
        Eigen::Vector3d last_point_b(laserCloudCornerLast->points[minPointInd2].x,
                                     laserCloudCornerLast->points[minPointInd2].y,
                                     laserCloudCornerLast->points[minPointInd2].z);

        double s;
        if (DISTORTION)
            // 点在起始点到结束点一周中的进度
            s = (cornerPointsSharp->points[i].intensity - int(cornerPointsSharp->points[i].intensity)) / SCAN_PERIOD;
        else
            s = 1.0;
        // 残差项
        ceres::CostFunction *cost_function = LidarEdgeFactor::Create(curr_point, last_point_a, last_point_b, s);
        // 添加残差块 残差项 损失函数  待优化的变量
        problem.AddResidualBlock(cost_function, loss_function, para_q, para_t);
        corner_correspondence++;
    }
}

2.2.6 点到面残差构建

 for (int i = 0; i < surfPointsFlatNum; ++i)
{
    TransformToStart(&(surfPointsFlat->points[i]), &pointSel);
    // 先找上一帧距离当前帧最近的面点
    kdtreeSurfLast->nearestKSearch(pointSel, 1, pointSearchInd, pointSearchSqDis);

    int closestPointInd = -1, minPointInd2 = -1, minPointInd3 = -1;
    // 距离必须小于阈值
    if (pointSearchSqDis[0] < DISTANCE_SQ_THRESHOLD)
    {
        // 取出找到的上一帧面点的索引
        closestPointInd = pointSearchInd[0];

        // 取出最近的面点在上一帧的那一条scan线上
        int closestPointScanID = int(laserCloudSurfLast->points[closestPointInd].intensity);
        double minPointSqDis2 = DISTANCE_SQ_THRESHOLD, minPointSqDis3 = DISTANCE_SQ_THRESHOLD;
        // 额外在寻找两个点,要求一个点和最近点同一个scan线 另一个点不同的scan
        // 按照增量方向寻找其它面点
        for (int j = closestPointInd + 1; j < (int)laserCloudSurfLast->points.size(); ++j)
        {
            // 不能和当前找到的上一帧面点线束太远
            if (int(laserCloudSurfLast->points[j].intensity) > (closestPointScanID + NEARBY_SCAN))
                break;
            // 计算和当前帧该点距离
            double pointSqDis = (laserCloudSurfLast->points[j].x - pointSel.x) *
                                    (laserCloudSurfLast->points[j].x - pointSel.x) +
                                (laserCloudSurfLast->points[j].y - pointSel.y) *
                                    (laserCloudSurfLast->points[j].y - pointSel.y) +
                                (laserCloudSurfLast->points[j].z - pointSel.z) *
                                    (laserCloudSurfLast->points[j].z - pointSel.z);

            // 如果是同一根scan且距离最近
            if (int(laserCloudSurfLast->points[j].intensity) <= closestPointScanID && pointSqDis < minPointSqDis2)
            {
                minPointSqDis2 = pointSqDis;
                minPointInd2 = j;
            }
            // 如果是其它的线束点
            else if (int(laserCloudSurfLast->points[j].intensity) > closestPointScanID && pointSqDis < minPointSqDis3)
            {
                minPointSqDis3 = pointSqDis;
                minPointInd3 = j;
            }
        }

        // 同样的方式 按照降序的方式去找这两个点
        for (int j = closestPointInd - 1; j >= 0; --j)
        {
            if (int(laserCloudSurfLast->points[j].intensity) < (closestPointScanID - NEARBY_SCAN))
                break;

            double pointSqDis = (laserCloudSurfLast->points[j].x - pointSel.x) *
                                    (laserCloudSurfLast->points[j].x - pointSel.x) +
                                (laserCloudSurfLast->points[j].y - pointSel.y) *
                                    (laserCloudSurfLast->points[j].y - pointSel.y) +
                                (laserCloudSurfLast->points[j].z - pointSel.z) *
                                    (laserCloudSurfLast->points[j].z - pointSel.z);

            if (int(laserCloudSurfLast->points[j].intensity) >= closestPointScanID && pointSqDis < minPointSqDis2)
            {
                minPointSqDis2 = pointSqDis;
                minPointInd2 = j;
            }
            else if (int(laserCloudSurfLast->points[j].intensity) < closestPointScanID && pointSqDis < minPointSqDis3)
            {
                minPointSqDis3 = pointSqDis;
                minPointInd3 = j;
            }
        }
        // 如果找到的另外两个点是有效值,就取出它们的3d坐标
        if (minPointInd2 >= 0 && minPointInd3 >= 0)
        {
            // 当前角点
            Eigen::Vector3d curr_point(surfPointsFlat->points[i].x,
                                       surfPointsFlat->points[i].y,
                                       surfPointsFlat->points[i].z);
            //    上一帧距离当前焦点最近的点
            Eigen::Vector3d last_point_a(laserCloudSurfLast->points[closestPointInd].x,
                                         laserCloudSurfLast->points[closestPointInd].y,
                                         laserCloudSurfLast->points[closestPointInd].z);

            Eigen::Vector3d last_point_b(laserCloudSurfLast->points[minPointInd2].x,
                                         laserCloudSurfLast->points[minPointInd2].y,
                                         laserCloudSurfLast->points[minPointInd2].z);
            Eigen::Vector3d last_point_c(laserCloudSurfLast->points[minPointInd3].x,
                                         laserCloudSurfLast->points[minPointInd3].y,
                                         laserCloudSurfLast->points[minPointInd3].z);

            double s;
            if (DISTORTION)
                s = (surfPointsFlat->points[i].intensity - int(surfPointsFlat->points[i].intensity)) / SCAN_PERIOD;
            else
                s = 1.0;
            // 构建点到面的约束
            ceres::CostFunction *cost_function = LidarPlaneFactor::Create(curr_point, last_point_a, last_point_b, last_point_c, s);
            problem.AddResidualBlock(cost_function, loss_function, para_q, para_t);
            plane_correspondence++;
        }
    }
}

2.2.7发布激光里程计和角点面点降频发送给后端

    // 发布雷达里程计结果
nav_msgs::Odometry laserOdometry;
laserOdometry.header.frame_id = "/map";
laserOdometry.child_frame_id = "/laser_odom";
laserOdometry.header.stamp = ros::Time().fromSec(timeSurfPointsLessFlat);
// 以四元数和平移向量发布出去
laserOdometry.pose.pose.orientation.x = q_w_curr.x();
laserOdometry.pose.pose.orientation.y = q_w_curr.y();
laserOdometry.pose.pose.orientation.z = q_w_curr.z();
laserOdometry.pose.pose.orientation.w = q_w_curr.w();
laserOdometry.pose.pose.position.x = t_w_curr.x();
laserOdometry.pose.pose.position.y = t_w_curr.y();
laserOdometry.pose.pose.position.z = t_w_curr.z();
pubLaserOdometry.publish(laserOdometry);
// 激光里程计路径
geometry_msgs::PoseStamped laserPose;
nav_msgs::Path laserPath;
laserPose.header = laserOdometry.header;
laserPose.pose = laserOdometry.pose.pose;
laserPath.header.stamp = laserOdometry.header.stamp;
laserPath.poses.push_back(laserPose);
laserPath.header.frame_id = "/map";
pubLaserPath.publish(laserPath);
// 一般角点
pcl::PointCloud<PointType>::Ptr laserCloudTemp = cornerPointsLessSharp;
// 上一帧的一般角点
cornerPointsLessSharp = laserCloudCornerLast;
laserCloudCornerLast = laserCloudTemp;

//
laserCloudTemp = surfPointsLessFlat;
surfPointsLessFlat = laserCloudSurfLast;
laserCloudSurfLast = laserCloudTemp;

laserCloudCornerLastNum = laserCloudCornerLast->points.size();
laserCloudSurfLastNum = laserCloudSurfLast->points.size();

// kdtree设置当前帧,用来下一帧lidar odom使用
kdtreeCornerLast->setInputCloud(laserCloudCornerLast);
kdtreeSurfLast->setInputCloud(laserCloudSurfLast);
// 一定降频后给后端发送
if (frameCount % skipFrameNum == 0)
{
    frameCount = 0;
    // 一般角点
    sensor_msgs::PointCloud2 laserCloudCornerLast2;
    pcl::toROSMsg(*laserCloudCornerLast, laserCloudCornerLast2);
    laserCloudCornerLast2.header.stamp = ros::Time().fromSec(timeSurfPointsLessFlat);
    laserCloudCornerLast2.header.frame_id = "/camera";
    pubLaserCloudCornerLast.publish(laserCloudCornerLast2);
    // 面点
    sensor_msgs::PointCloud2 laserCloudSurfLast2;
    pcl::toROSMsg(*laserCloudSurfLast, laserCloudSurfLast2);
    laserCloudSurfLast2.header.stamp = ros::Time().fromSec(timeSurfPointsLessFlat);
    laserCloudSurfLast2.header.frame_id = "/camera";
    pubLaserCloudSurfLast.publish(laserCloudSurfLast2);
    // 整体点云
    sensor_msgs::PointCloud2 laserCloudFullRes3;
    pcl::toROSMsg(*laserCloudFullRes, laserCloudFullRes3);
    laserCloudFullRes3.header.stamp = ros::Time().fromSec(timeSurfPointsLessFlat);
    laserCloudFullRes3.header.frame_id = "/camera";
    pubLaserCloudFullRes.publish(laserCloudFullRes3);
}

2.3 scan-map 后端匹配 点云插入地图laserMapping.cpp

2.3.1 传感器数据类型转换成点云 odom转换为eigen类型

// 点云全部转换为pcl的数据格式
	laserCloudCornerLast->clear();
	pcl::fromROSMsg(*cornerLastBuf.front(), *laserCloudCornerLast);
	cornerLastBuf.pop();

	laserCloudSurfLast->clear();
	pcl::fromROSMsg(*surfLastBuf.front(), *laserCloudSurfLast);
	surfLastBuf.pop();

	laserCloudFullRes->clear();
	pcl::fromROSMsg(*fullResBuf.front(), *laserCloudFullRes);
	fullResBuf.pop();
	// lidar odom 的结果转成eigen数据格式
	q_wodom_curr.x() = odometryBuf.front()->pose.pose.orientation.x;
	q_wodom_curr.y() = odometryBuf.front()->pose.pose.orientation.y;
	q_wodom_curr.z() = odometryBuf.front()->pose.pose.orientation.z;
	q_wodom_curr.w() = odometryBuf.front()->pose.pose.orientation.w;
	t_wodom_curr.x() = odometryBuf.front()->pose.pose.position.x;
	t_wodom_curr.y() = odometryBuf.front()->pose.pose.position.y;
	t_wodom_curr.z() = odometryBuf.front()->pose.pose.position.z;
	odometryBuf.pop();
	// 考虑到实时性,就把队列其他的都pop出去,不然可能出现处理延时的情况
	while (!cornerLastBuf.empty())
	{
		cornerLastBuf.pop();
		printf("普通面点未清空  \n");
	}
	mBuf.unlock();

2.3.2 根据前端结果 得到后端的初始位姿

	// q_wodom_curr  t_wodom_curr 是雷达的odom
	// q_w_curr  t_w_curr是map坐标系下的位姿
	q_w_curr = q_wmap_wodom * q_wodom_curr;
	t_w_curr = q_wmap_wodom * t_wodom_curr + t_wmap_wodom;

2.3.3根据位置,获得全局地图的中心格子

	// 根据初始估计值计算寻找当前位姿在地图中的索引,一个各自边长是50m
	// 后端的地图本质上是一个以当前点为中心的一个栅格地图
	// 判断在全局栅格的哪一个栅格里,一个栅格是50m 栅格中心是25m
	// t_w_curr 是map坐标系下的位姿  centerCubeI网格中心
	centerCubeI = int((t_w_curr.x() + 25.0) / 50.0) + laserCloudCenWidth;
	centerCubeJ = int((t_w_curr.y() + 25.0) / 50.0) + laserCloudCenHeight;
	centerCubeK = int((t_w_curr.z() + 25.0) / 50.0) + laserCloudCenDepth;
	// 由于c语言的取整是向0取整 因此如-1.66 成为了-1 但-2才是正确的,因此这里自减1
	if (t_w_curr.x() + 25.0 < 0)
		centerCubeI--;
	if (t_w_curr.y() + 25.0 < 0)
		centerCubeJ--;
	if (t_w_curr.z() + 25.0 < 0)
		centerCubeK--;

2.3.4 根据机器人位置 更新全局地图范围 其它方向雷同

	// 如果当前centerCubeI栅格索引小于3,就说明当前点快接近地图边界了,需要进行调整,相当于地图整体往x正方向移动
	while (centerCubeI < 3)
	{
		for (int j = 0; j < laserCloudHeight; j++)
		{
			for (int k = 0; k < laserCloudDepth; k++)
			{
				// laserCloudWidth是widtch方向栅格总大小21  laserCloudHeight   21
				int i = laserCloudWidth - 1;
				// 从x最大值开始
				pcl::PointCloud<PointType>::Ptr laserCloudCubeCornerPointer =
					// 角点
					laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
				pcl::PointCloud<PointType>::Ptr laserCloudCubeSurfPointer =
					// 面点
					laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
				// 整体右移
				for (; i >= 1; i--)
				{
					laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
						laserCloudCornerArray[i - 1 + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
					laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
						laserCloudSurfArray[i - 1 + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];
				}
				// 此时i=0,也就是最左边的格子赋值了之前最右边的格子
				laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
					laserCloudCubeCornerPointer;
				laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =
					laserCloudCubeSurfPointer;
				// 该点云清零,由于是指针操作,相当于最左边的格子清空了
				laserCloudCubeCornerPointer->clear();
				laserCloudCubeSurfPointer->clear();
			}
		}
		// 索引右移
		centerCubeI++;
		laserCloudCenWidth++;
	}

2.3.5根据全局地图中心 ,提取局部地图每个格子在全局地图中的位置

	// 从当前格子为中心,选出地图中一定范围的点云 5*5*3 75个cube
for (int i = centerCubeI - 2; i <= centerCubeI + 2; i++) // 宽度方向
{
	for (int j = centerCubeJ - 2; j <= centerCubeJ + 2; j++) // 高度方向
	{
		for (int k = centerCubeK - 1; k <= centerCubeK + 1; k++) // 深度方向
		{
			if (i >= 0 && i < laserCloudWidth &&
				j >= 0 && j < laserCloudHeight &&
				k >= 0 && k < laserCloudDepth)
			{
				// 把每个格子序号依次存到对应的索引
				//  i + laserCloudWidth * j  二维度平面位置
				// 每个格子在三维全局地图中的位置
				laserCloudValidInd[laserCloudValidNum] = i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k;
				// 局部地图格子数量
				laserCloudValidNum++;
				laserCloudSurroundInd[laserCloudSurroundNum] = i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k;
				laserCloudSurroundNum++;
			}
		}
	}
}

2.3.6当前帧 根据每个格子的在全局地图中的id,将局部地图的每个格子角点和面点分别叠加

	laserCloudCornerFromMap->clear();
laserCloudSurfFromMap->clear();
// 开始构建用来这一帧优化的小的局部地图 根据上面得到的索引进行叠加求和
for (int i = 0; i < laserCloudValidNum; i++)
{
	// 角点叠加
	// laserCloudValidInd[i] 每个格子的在全局地图中的位置

	*laserCloudCornerFromMap += *laserCloudCornerArray[laserCloudValidInd[i]];
	// 面点叠加
	*laserCloudSurfFromMap += *laserCloudSurfArray[laserCloudValidInd[i]];
}

2.3.7对当前帧角点面点下采样

	// 角点
downSizeFilterCorner.setInputCloud(laserCloudCornerLast);
downSizeFilterCorner.filter(*laserCloudCornerStack);
// 面点
downSizeFilterSurf.setInputCloud(laserCloudSurfLast);
downSizeFilterSurf.filter(*laserCloudSurfStack);

2.3.8点线残差构建 ,这里和前端有区别 ,通过最邻近的5个地图点进行构建协方差矩阵,通过协方差矩阵最大特征值与次大特征值判断是否存在直线

int corner_num = 0;
	// 构建角点相关约束
	for (int i = 0; i < laserCloudCornerStackNum; i++)
	{
		// 实时角点 点坐标
		pointOri = laserCloudCornerStack->points[i];
		//  把雷达点转换到map坐标系
		pointAssociateToMap(&pointOri, &pointSel);
		// 局部地图中寻找和该点最近的5个点
		// pointSearchInd 5个点在局部地图中的索引
		kdtreeCornerFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);
		// 判断最远的点距离不能超过1m,否则就是无效约束
		if (pointSearchSqDis[4] < 1.0)
		{
			std::vector<Eigen::Vector3d> nearCorners;
			Eigen::Vector3d center(0, 0, 0);
			for (int j = 0; j < 5; j++)
			{
				Eigen::Vector3d tmp(laserCloudCornerFromMap->points[pointSearchInd[j]].x,
									laserCloudCornerFromMap->points[pointSearchInd[j]].y,
									laserCloudCornerFromMap->points[pointSearchInd[j]].z);
				// 5个点坐标的叠加
				center = center + tmp;
				// 转存这5个点给nearCorners
				nearCorners.push_back(tmp);
			}
			// 计算这5个点的均值
			center = center / 5.0;

			Eigen::Matrix3d covMat = Eigen::Matrix3d::Zero();
			// 构建协方差矩阵,5个变量的变化趋势
			for (int j = 0; j < 5; j++)
			{
				// 每个点与均值之间的偏移量
				Eigen::Matrix<double, 3, 1> tmpZeroMean = nearCorners[j] - center;
				// 该点与该点转置的外积 当前矩阵与当前矩阵的转置 得到3*3的矩阵,当前点的协方差矩阵
				covMat = covMat + tmpZeroMean * tmpZeroMean.transpose();
			}
			// 进行特征值分解
			Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> saes(covMat);

			// 根据特征值分解情况看看是不是真正的线特征
			// 特征向量就是线特征的方向 
			Eigen::Vector3d unit_direction = saes.eigenvectors().col(2);
			Eigen::Vector3d curr_point(pointOri.x, pointOri.y, pointOri.z);
			// 最大特征值大于次大特征值的3倍认为是线特征
			if (saes.eigenvalues()[2] > 3 * saes.eigenvalues()[1])
			{
				Eigen::Vector3d point_on_line = center;
				Eigen::Vector3d point_a, point_b;
				// 根据拟合出来的线特征方向,以平均点为中心构建两个虚拟点
				//从中心点沿着方向向量向两端移动0.1m,使用两个点代替一条直线,
				//这样计算点到直线的距离的形式就跟laserOdometry相似
				point_a = 0.1 * unit_direction + point_on_line;
				point_b = -0.1 * unit_direction + point_on_line;
				// 构建约束 和lidar odom 约束一致
				ceres::CostFunction *cost_function = LidarEdgeFactor::Create(curr_point, point_a, point_b, 1.0);
				problem.AddResidualBlock(cost_function, loss_function, parameters, parameters + 4);
				corner_num++;
			}
		}
	}

2.3.9点面残差构建 这里与前端有区别 面的构建通过 最临近当前角点的5个点 通过构建超定方程 qr分解获得的 法向量与点之间的关系

int surf_num = 0;
// 构建面点的约束
for (int i = 0; i < laserCloudSurfStackNum; i++)
{
	// 实时面点坐标
	pointOri = laserCloudSurfStack->points[i];
	// 把雷达点坐标转到map坐标系
	pointAssociateToMap(&pointOri, &pointSel);
	// 局部地图中搜索距离该点最近的5个点
	kdtreeSurfFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);

	Eigen::Matrix<double, 5, 3> matA0;
	Eigen::Matrix<double, 5, 1> matB0 = -1 * Eigen::Matrix<double, 5, 1>::Ones();
	// 构建面点方程ax+by+cz+d=0
	// 通过构建一个超定方程求解这个平面方程
	// 判断最远的点距离不能超过1m,否则就是无效约束
	if (pointSearchSqDis[4] < 1.0)
	{
		for (int j = 0; j < 5; j++)
		{
			matA0(j, 0) = laserCloudSurfFromMap->points[pointSearchInd[j]].x;
			matA0(j, 1) = laserCloudSurfFromMap->points[pointSearchInd[j]].y;
			matA0(j, 2) = laserCloudSurfFromMap->points[pointSearchInd[j]].z;
		}
		// 通过eigen接口求解该方程,解就是这个平面的法向量
		// 豪斯霍尔德变换
		Eigen::Vector3d norm = matA0.colPivHouseholderQr().solve(matB0);
		double negative_OA_dot_norm = 1 / norm.norm();
		// 法向量归一化
		norm.normalize();

		bool planeValid = true;
		// 根据求出来的平面方程进行校验 看看是不是符合平面约束
		for (int j = 0; j < 5; j++)
		{
			// 这里相当于求解点到平面的距离
			if (fabs(norm(0) * laserCloudSurfFromMap->points[pointSearchInd[j]].x +
					 norm(1) * laserCloudSurfFromMap->points[pointSearchInd[j]].y +
					 norm(2) * laserCloudSurfFromMap->points[pointSearchInd[j]].z + negative_OA_dot_norm) > 0.2)
			{
				planeValid = false; // 点如果距离平面过远,就认为这是一个拟合的不好的平面
				break;
			}
		}
		Eigen::Vector3d curr_point(pointOri.x, pointOri.y, pointOri.z);
		// 如果平面有效就构建平面约束
		if (planeValid)
		{
			// 利用平面方程构建约束 和前端构建形式稍有不同
			ceres::CostFunction *cost_function = LidarPlaneNormFactor::Create(curr_point, norm, negative_OA_dot_norm);
			problem.AddResidualBlock(cost_function, loss_function, parameters, parameters + 4);
			surf_num++;
		}

2.3.10通过反变换更新odom-》map的tf关系

// q_wmap_wodom t_wmap_wodom是map到odom之间的关系
q_wmap_wodom = q_w_curr * q_wodom_curr.inverse();
t_wmap_wodom = t_w_curr - q_wmap_wodom * t_wodom_curr;

2.3.11将优化后的当前帧角点加入到局部地图,面点雷同

	for (int i = 0; i < laserCloudCornerStackNum; i++)
{
	// 该点根据位姿投到地图坐标系
	pointAssociateToMap(&laserCloudCornerStack->points[i], &pointSel);
	// 算出这个点所在的格子在全局地图中的索引
	int cubeI = int((pointSel.x + 25.0) / 50.0) + laserCloudCenWidth;
	int cubeJ = int((pointSel.y + 25.0) / 50.0) + laserCloudCenHeight;
	int cubeK = int((pointSel.z + 25.0) / 50.0) + laserCloudCenDepth;
	// 同样负数做对应的操作
	if (pointSel.x + 25.0 < 0)
		cubeI--;
	if (pointSel.y + 25.0 < 0)
		cubeJ--;
	if (pointSel.z + 25.0 < 0)
		cubeK--;
	// 如果超过边界的话就算了
	if (cubeI >= 0 && cubeI < laserCloudWidth &&
		cubeJ >= 0 && cubeJ < laserCloudHeight &&
		cubeK >= 0 && cubeK < laserCloudDepth)
	{
		// 当前格子在全局地图中的索引
		int cubeInd = cubeI + laserCloudWidth * cubeJ + laserCloudWidth * laserCloudHeight * cubeK;
		// 将当前帧点云角点插入到角点格子中
		laserCloudCornerArray[cubeInd]->push_back(pointSel);
	}
}

2.3.12把当前帧涉及到的局部地图下采样

	for (int i = 0; i < laserCloudValidNum; i++)
	{
		int ind = laserCloudValidInd[i];

		pcl::PointCloud<PointType>::Ptr tmpCorner(new pcl::PointCloud<PointType>());
		downSizeFilterCorner.setInputCloud(laserCloudCornerArray[ind]);
		downSizeFilterCorner.filter(*tmpCorner);
		laserCloudCornerArray[ind] = tmpCorner;

		pcl::PointCloud<PointType>::Ptr tmpSurf(new pcl::PointCloud<PointType>());
		downSizeFilterSurf.setInputCloud(laserCloudSurfArray[ind]);
		downSizeFilterSurf.filter(*tmpSurf);
		laserCloudSurfArray[ind] = tmpSurf;
	}

2.3.13局部地图发布

	//  每隔5帧对外发布一下
if (frameCount % 5 == 0)
{
	laserCloudSurround->clear();
	// 把当前帧相关的局部地图发布出去  laserCloudSurroundNum 坐标点的索引数目
	for (int i = 0; i < laserCloudSurroundNum; i++)
	{
		int ind = laserCloudSurroundInd[i];
		*laserCloudSurround += *laserCloudCornerArray[ind];
		*laserCloudSurround += *laserCloudSurfArray[ind];
	}

	sensor_msgs::PointCloud2 laserCloudSurround3;
	pcl::toROSMsg(*laserCloudSurround, laserCloudSurround3);
	laserCloudSurround3.header.stamp = ros::Time().fromSec(timeLaserOdometry);
	laserCloudSurround3.header.frame_id = "/map";
	pubLaserCloudSurround.publish(laserCloudSurround3);
}

2.3.14全局地图发布

// 每隔20帧发布一次全局地图
if (frameCount % 20 == 0)
{
	// 21*21*11=4851
	pcl::PointCloud<PointType> laserCloudMap;
	for (int i = 0; i < 4851; i++)
	{
		laserCloudMap += *laserCloudCornerArray[i];
		laserCloudMap += *laserCloudSurfArray[i];
	}
	sensor_msgs::PointCloud2 laserCloudMsg;
	pcl::toROSMsg(laserCloudMap, laserCloudMsg);
	laserCloudMsg.header.stamp = ros::Time().fromSec(timeLaserOdometry);
	laserCloudMsg.header.frame_id = "/map";
	pubLaserCloudMap.publish(laserCloudMsg);
}

2.3.15全局位姿,轨迹 tf 发布文章来源地址https://www.toymoban.com/news/detail-682387.html

	// 发布当前位姿
nav_msgs::Odometry odomAftMapped;
odomAftMapped.header.frame_id = "/map";
odomAftMapped.child_frame_id = "/laser_link";
odomAftMapped.header.stamp = ros::Time().fromSec(timeLaserOdometry);
odomAftMapped.pose.pose.orientation.x = q_w_curr.x();
odomAftMapped.pose.pose.orientation.y = q_w_curr.y();
odomAftMapped.pose.pose.orientation.z = q_w_curr.z();
odomAftMapped.pose.pose.orientation.w = q_w_curr.w();
odomAftMapped.pose.pose.position.x = t_w_curr.x();
odomAftMapped.pose.pose.position.y = t_w_curr.y();
odomAftMapped.pose.pose.position.z = t_w_curr.z();
pubOdomAftMapped.publish(odomAftMapped);
// 发布当前轨迹
geometry_msgs::PoseStamped laserAfterMappedPose;
laserAfterMappedPose.header = odomAftMapped.header;
laserAfterMappedPose.pose = odomAftMapped.pose.pose;
laserAfterMappedPath.header.stamp = odomAftMapped.header.stamp;
laserAfterMappedPath.header.frame_id = "/map";
laserAfterMappedPath.poses.push_back(laserAfterMappedPose);
pubLaserAfterMappedPath.publish(laserAfterMappedPath);

// 发布tf
static tf::TransformBroadcaster br;
tf::Transform transform;
tf::Quaternion q;
transform.setOrigin(tf::Vector3(t_w_curr(0),
								t_w_curr(1),
								t_w_curr(2)));
q.setW(q_w_curr.w());
q.setX(q_w_curr.x());
q.setY(q_w_curr.y());
q.setZ(q_w_curr.z());
transform.setRotation(q);
br.sendTransform(tf::StampedTransform(transform, odomAftMapped.header.stamp, "/map", "/laser_link"));

到了这里,关于3d激光slam建图与定位(2)_aloam代码阅读的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Jetson Nano之ROS入门 - - SLAM之Gmapping建图与路径规划

    SLAM(Simultaneous Localization And Mapping)是指在机器人或移动设备等自主移动系统的运动过程中,同时实时地构建出环境地图并确定自己的位置的技术。SLAM技术已经广泛应用于无人驾驶、机器人导航、虚拟现实等领域。 在SLAM技术中,机器人需要通过自身的传感器,如激光雷达、

    2024年02月08日
    浏览(32)
  • 基于视觉语义信息的建图与定位综述

    点云PCL免费知识星球,点云论文速读。 文章:Semantic Visual Simultaneous Localization and Mapping: A Survey 作者:Kaiqi Chen, Jianhua Zhang, Jialing Liu, Qiyi Tong, Ruyu Liu, Shengyong Chen 编辑:点云PCL 来源:arXiv 2022 欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈。文章仅做学术分享,如有

    2023年04月18日
    浏览(47)
  • 经典文献阅读之--Evaluation of Lidar-based 3D SLAM algorithms (激光SLAM性能比较)

    我们在日常使用激光SLAM算法的时候,常常会发现现有的算法只会和一些比较经典或者前作去进行比较,很多时候我们更希望对主流的激光SLAM方法进行性能比较。之前作者转载过一篇文章《常见不同3D激光SLAM方案对比》。但是对比的算法有限。现在瑞典Lule科技大学评估9种最常

    2024年02月02日
    浏览(40)
  • 【3D激光SLAM】LOAM源代码解析--transformMaintenance.cpp

    ·【3D激光SLAM】LOAM源代码解析–scanRegistration.cpp ·【3D激光SLAM】LOAM源代码解析–laserOdometry.cpp ·【3D激光SLAM】LOAM源代码解析–laserMapping.cpp ·【3D激光SLAM】LOAM源代码解析–transformMaintenance.cpp 本系列文章将对LOAM源代码进行讲解,在讲解过程中,涉及到论文中提到的部分, 会结

    2024年02月11日
    浏览(50)
  • 【3D激光SLAM】LOAM源代码解析--laserOdometry.cpp

    ·【3D激光SLAM】LOAM源代码解析–scanRegistration.cpp ·【3D激光SLAM】LOAM源代码解析–laserOdometry.cpp ·【3D激光SLAM】LOAM源代码解析–laserMapping.cpp ·【3D激光SLAM】LOAM源代码解析–transformMaintenance.cpp 本系列文章将对LOAM源代码进行讲解,在讲解过程中,涉及到论文中提到的部分, 会结

    2024年02月11日
    浏览(76)
  • 【3D激光SLAM】LOAM源代码解析--scanRegistration.cpp

    ·【3D激光SLAM】LOAM源代码解析–scanRegistration.cpp ·【3D激光SLAM】LOAM源代码解析–laserOdometry.cpp ·【3D激光SLAM】LOAM源代码解析–laserMapping.cpp ·【3D激光SLAM】LOAM源代码解析–transformMaintenance.cpp 本系列文章将对LOAM源代码进行讲解,在讲解过程中,涉及到论文中提到的部分, 会结

    2024年02月11日
    浏览(37)
  • 3D激光slam:LeGO-LOAM---地面点提取方法及代码分析

    地面点提取方法 LeGO-LOAM中前端改进中很重要的一点就是充分利用地面点,本片博客主要讲解 如何进行地面点提取 如下图所示,相邻的两个scan的同一列,打在地面上,形成两个点A和B。 它们的垂直高度差为h,这个值在理想情况(雷达水平安装,地面是水平的)接近于0 水平距

    2023年04月09日
    浏览(47)
  • 经典文献阅读之--Orbeez-SLAM(单目稠密点云建图)

    对于现在的VSLAM而言,现在越来越多的工作开始聚焦于如何将深度学习结合到VSLAM当中,而最近的这个工作就给出了一个比较合适的方法。《Orbeez-SLAM: A Real-time Monocular Visual SLAM with ORB Features and NeRF-realized Mapping》这篇文章,可以轻松适应新的场景,而不需要预先训练,并实时为

    2024年02月13日
    浏览(39)
  • 基于Gazebo搭建移动机器人,并结合SLAM系统完成定位和建图仿真

    博客地址:https://www.cnblogs.com/zylyehuo/ gazebo小车模型创建及仿真详见之前博客 gazebo小车模型(附带仿真环境) - zylyehuo - 博客园 gazebo+rviz 仿真 - zylyehuo - 博客园 参考链接 Autolabor-ROS机器人入门课程《ROS理论与实践》 安装 gmapping 包(用于构建地图): sudo apt install ros-melodic-gmapping 安

    2024年02月04日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包