【Python数据分析】数据分析之numpy基础

这篇具有很好参考价值的文章主要介绍了【Python数据分析】数据分析之numpy基础。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

实验环境:建立在Python3的基础之上

numpy提供了一种数据类型,提供了数据分析的运算基础,安装方式

pip install numpy

导入numpy到python项目

import numpy as np

本文以案例的方式展示numpy的基本语法,没有介绍语法的细枝末节,笔者认为通过查阅案例就能掌握基本用法。

numpy数组的基本概念

numpy默认所有元素具有相同的数据类型,如果类型不一致,会对其进行优化。如果元素类型不同,将统一成一种类型,优先级:str>float>int

【Python数据分析】数据分析之numpy基础,python,数据分析

import numpy as np``   ``t_list = [1, 1.2, "hello"]``print(t_list)``   ``t_list = np.array([1, 1.2, "hello"])``print(t_list)``   ``t_list = np.array([1, 1.2])``print(t_list)

定义数组的时候,可以声明数据类型

t_list = np.array([1,2,3])``print(t_list)``   ``t_list = np.array([1,2,3], dtype=np.float32)``print(t_list)

【Python数据分析】数据分析之numpy基础,python,数据分析

numpy构造数组

1、np.ones(shape, dtype)

shape=(m,n)  m行n列``shape=(m)    m个元素的一维数组``shape=(m,)   m个元素的一维数组``shape=(m,1)  m行1列的二维数组  [[1],[2],[3]]``shape=(1,m)  1列m行的二维数组  [[1,2,3]]
t_list = np.ones(shape=(5,4), dtype=np.int32)``print(t_list)

【Python数据分析】数据分析之numpy基础,python,数据分析

2、np.zeros(shape, dtype)

t_list = np.zeros(shape=(5,3), dtype=np.int32)``print(t_list)

【Python数据分析】数据分析之numpy基础,python,数据分析

3、np.full(shape, fill_value, dtype)

t_list = np.full(shape=(2,3,4), fill_value=10, dtype=np.int32)``print(t_list)

【Python数据分析】数据分析之numpy基础,python,数据分析

4、np.eye(N,M,k,dtype)

# 单位矩阵``t_list = np.eye(N=5, dtype=np.float32)``print(t_list)``   ``# 控制行列的矩阵``t_list = np.eye(N=5, M=4, dtype=np.int32)``print(t_list)``   ``# 1向左偏移``t_list = np.eye(N=5, k=-1)``print(t_list)

【Python数据分析】数据分析之numpy基础,python,数据分析

5、np.linspace(start, stop, num, endpoint=True, retstep=False, dtype)

# 共11个数``t_list = np.linspace(0, 10, 10)``print(t_list)``# 共10个数``t_list = np.linspace(0, 10, 10, endpoint=False)``print(t_list)

【Python数据分析】数据分析之numpy基础,python,数据分析

6、np.arange(start, stop, step, dtype)

t_list = np.arange(1,10,2)``print(t_list)

【Python数据分析】数据分析之numpy基础,python,数据分析

7、np.random.randint(low, high=None, size=None, dtype)

# 随机数``t_list = np.random.randint(1, 100, size=(5,4))``print(t_list)

【Python数据分析】数据分析之numpy基础,python,数据分析

8、np.random.random(size)

# 0到1之间的随机数``t_list = np.random.random(size=(5,4))``print(t_list)

【Python数据分析】数据分析之numpy基础,python,数据分析

9、np.random.permutation()

# 随机索引``t_list = np.random.permutation(10)``print(t_list)

【Python数据分析】数据分析之numpy基础,python,数据分析

10、属性

t_list = np.full(shape=(2,3,4), fill_value=10, dtype=np.int32)``print(t_list)``# 维度``print(t_list.ndim)``# 形状``print(t_list.shape)``# 大小``print(t_list.size)``# 元素类型``print(t_list.dtype)

【Python数据分析】数据分析之numpy基础,python,数据分析

数组的索引和切片

1、索引

t_list = np.array([1,2,3,4,5])``# 以下标的方式访问``print(t_list[0])``# 以列表索引的方式访问``print(t_list[[0,1,2,0,1,3]])``# 以布尔类型访问,得到数组中True的值,但布尔列表的长度需要与数组长度相同``print(t_list[[True,False,True,False,False]])``# 数组可以做运算``print(t_list > 3)``print(t_list[t_list > 3])``t_list = np.array([[1,20,3],[2,30,4],[3,40,5]])``print(t_list[0][1])``# 下标可以放在一起``print(t_list[0,1])``# 高维数组``t_list = np.random.randint(1, 10, size=(3,4,5), dtype=np.int32)``print(t_list)``print(t_list[1])``print(t_list[1,1])``print(t_list[1,1,1])

【Python数据分析】数据分析之numpy基础,python,数据分析

2、切片

t_list = np.random.randint(1,100,size=(10), dtype=np.int32)``print(t_list)``# 切片``print(t_list[2:5])``t_list = np.random.randint(1,100,size=(5,6), dtype=np.int32)``print(t_list)``# 行切片``print(t_list[1:3])``# 列切片``print(t_list[:,1:3])``t_list = np.random.randint(1,100,size=(3,6,5), dtype=np.int32)``print(t_list)``print(t_list[:,:,1:3])

【Python数据分析】数据分析之numpy基础,python,数据分析

3、变形

t_list = np.random.randint(1,100,size=(20), dtype=np.int32)``# 一维数组变形为二维数组,变形需要注意,前后两个数组的元素个数相同``print(t_list.reshape(4,5))

【Python数据分析】数据分析之numpy基础,python,数据分析

4、连接

t_list = np.random.randint(1,100,size=(4,4))``t_list2 = np.random.randint(1,100,size=(4,4))``# 横向连接,要求两个数组的横列大小相同``t_list = np.concatenate((t_list,t_list2), axis=1)``# 纵向连接,要求两个数组的横列大小相同``t_list = np.concatenate((t_list,t_list2), axis=0)

【Python数据分析】数据分析之numpy基础,python,数据分析

t_list = np.random.randint(1,100,size=(4,4))``t_list2 = np.random.randint(1,100,size=(4,4))``np.hstack((t_list,t_list2))``np.vstack((t_list,t_list2))

【Python数据分析】数据分析之numpy基础,python,数据分析

5、切分

t_list = np.random.randint(1,100,size=(4,8))``# 横向切分,等份切分``part1, part2 = np.split(t_list, indices_or_sections=2)``print(part1)``print(part2)``# 纵向切分``part1, part2 = np.split(t_list, indices_or_sections=2, axis=1)``print(part1)``print(part2)``t_list = np.random.randint(1,100,size=(5,7))``part1, part2, part3 = np.split(t_list, indices_or_sections=[2,3])``print(part1)``print(part2)``print(part3)``part1, part2, part3 = np.split(t_list, indices_or_sections=[2,3],axis=1)``print(part1)``print(part2)``print(part3)

【Python数据分析】数据分析之numpy基础,python,数据分析

part1, part2, part3 = np.vsplit(t_list, indices_or_sections=[2,3])``print(part1)``print(part2)``print(part3)``part1, part2, part3 = np.hsplit(t_list, indices_or_sections=[2,3])``print(part1)``print(part2)``print(part3)

【Python数据分析】数据分析之numpy基础,python,数据分析

6、复制

ct_list = t_list.copy()``ct_list[1,2] = 1000``print(t_list)``print(ct_list)

【Python数据分析】数据分析之numpy基础,python,数据分析

聚合操作

1、求和

t_list = np.random.randint(1,100,size=(4,8))``# 求和``print(t_list.sum())``# 求均值``print(t_list.mean())``# 求最值``print(t_list.max())``print(t_list.min())``# 最值索引``print(t_list.argmax())``print(t_list.argmin())``# 标准方差``print(t_list.std())``# 方差``print(t_list.var())``# 中位数``print(np.median(t_list))

【Python数据分析】数据分析之numpy基础,python,数据分析

2、布尔运算

t_list = np.array([True, False, True, True])``# 只要存在一个True,返回True``print(t_list.any())``# 全部为Ture,返回True``print(t_list.all())

【Python数据分析】数据分析之numpy基础,python,数据分析

3、矩阵

t_list = np.array([[1,2,3],[2,3,4]])``t_list2 = np.array([[1,2],[2,3],[3,4]])``print(np.dot(t_list, t_list2))

【Python数据分析】数据分析之numpy基础,python,数据分析

以上是numpy的基本操作,numpy提供了操作数组的运算基础,复杂业务处理,还需要Pandas的加入。

---------------------------END---------------------------

题外话

【Python数据分析】数据分析之numpy基础,python,数据分析

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

【Python数据分析】数据分析之numpy基础,python,数据分析
【Python数据分析】数据分析之numpy基础,python,数据分析

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!【Python数据分析】数据分析之numpy基础,python,数据分析

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

【Python数据分析】数据分析之numpy基础,python,数据分析

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

【Python数据分析】数据分析之numpy基础,python,数据分析

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

【Python数据分析】数据分析之numpy基础,python,数据分析

六、面试宝典

【Python数据分析】数据分析之numpy基础,python,数据分析

【Python数据分析】数据分析之numpy基础,python,数据分析

简历模板【Python数据分析】数据分析之numpy基础,python,数据分析

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

若有侵权,请联系删除文章来源地址https://www.toymoban.com/news/detail-682646.html

到了这里,关于【Python数据分析】数据分析之numpy基础的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 银行营销数据分析---Python(numpy、pandas、matplotlib)

    数据来源:kaggle银行营销数据 工具:Python、Jupyter Notebook 本项目采取的是kaggle银行营销的数据源,主要是预测客户是否会订购银行的产品,但是,这次我将 使用numpy、pandas、matplotlib数据分析三件套,基于源数据,深入分析影响银行三大业务—存款、贷款、营销产品的因素 ,

    2024年02月07日
    浏览(58)
  • 【Python爬虫与数据分析】NumPy进阶——数组操作与运算

    目录 一、NumPy数组操作 1. ndarray更改形状 2. ndarray转置 3. ndarray组合 4. ndarray拆分 5. ndarray排序 二、NumPy数组运算 1. 基本运算 2. 逻辑函数 3. 数学函数 三、日期时间的表示和间隔 1. 日期时间的表示——datetime64 2. 日期时间的计算——timedelta64 3. datetime64与datetime的转换 在对数组进

    2024年02月15日
    浏览(49)
  • python数据分析学习笔记之matplotlib、numpy、pandas

    为了学习机器学习,在此先学习以下数据分析的matplotlib,numpy,pandas,主要是为自己的学习做个记录,如有不会的可以随时查阅。希望大家可以一起学习共同进步,我们最终都可以说:功不唐捐,玉汝于成。就算遇到困难也不要气馁,大声说:我不怕,我敏而好学!! 把大量

    2024年02月08日
    浏览(59)
  • 【Python爬虫与数据分析】NumPy初阶——数组创建与访问

    目录 一、NumPy概述 二、NumPy数据类型 三、创建数组 1. numpy.array函数创建数组 2. np.arange创建数组 3. numpy.random.rand创建数组 4. numpy.random.randint创建数组 5. NumPy创建特殊数组 四、数组的属性 五、NumPy数组索引与切片 NumPy(Numerical Python的简称)是一个开源的Python科学计算库,用于对

    2024年02月13日
    浏览(52)
  • python-数据分析-numpy、pandas、matplotlib的常用方法

    输出方式不同 里面包含的元素类型 使用 索引/切片 访问ndarray元素 切片 左闭右开 np.array(list) np.arange() np.random.randn() - - - 服从标准正态分布- - - 数学期望 μ - - - 标准方差 s 使用matplotlib.pyplot模块验证标准正态分布 np.random.randint(起始数,终止数(行,列)) 数据分析 - - - 数据清洗

    2024年02月10日
    浏览(99)
  • Python数据分析:NumPy、Pandas和Matplotlib的使用和实践

    在现代数据分析领域中,Python已成为最受欢迎的编程语言之一。Python通过庞大的社区和出色的库支持,成为了数据科学家和分析师的首选语言。在Python的库中,NumPy、Pandas和Matplotlib是三个最为重要的库,它们分别用于处理数值数组、数据处理和可视化。本文将介绍这三个库的

    2024年02月04日
    浏览(69)
  • Python 数据分析入门教程:Numpy、Pandas、Matplotlib和Scikit-Learn详解

    NumPy是一个Python的科学计算基础模块,提供了多维数组和矩阵操作功能。 NumPy中的数组比Python自带的列表更适合进行数值计算和数据分析。 Pandas建立在NumPy之上,提供了更高级的数据分析功能。 Pandas中的DataFrame可以看成是一个二维表格,便于加载和分析数据。 Matplotlib可以用来绘

    2024年02月07日
    浏览(54)
  • 【数据分析入门】Numpy基础

    NumPy 的全称为 Numeric Python,它是 Python 的第三方扩展包,主要用来计算、处理一维或多维数组。   步入8月了,7月时因为项目所需,自学了 深度学习 相关的内容,现在 已经把项目所需要的神经网络框架搭建起来了,输入输出也都归一化了,模拟误差也加上了,图像的参数

    2024年02月13日
    浏览(78)
  • 【数据分析 - 基础入门之NumPy⑥】- NumPy案例巩固强化

    大家好!我是初心,本期给大家带来的是 NumPy 案例巩固强化练习题,共17道,亲测。 注:题目素材来自 ——《千锋教育》 本期跟大家分享的就是这些题目了!希望大家可以多多实操练习,加强巩固,以便更好的掌握 NumPy 。 文章直达 链接 上期回顾 【数据分析 - 基础入门之

    2024年02月15日
    浏览(41)
  • 【数据分析 - 基础入门之NumPy④】NumPy基本操作 - 一

    大家好!我是初心,本期给大家带来的是【【NumPy系列】基本操作 - 一。 作者的【 Python 数据分析】专栏正在火热更新中,如果本文对您有帮助,欢迎大家点赞 + 评论 + 收藏 ! 每日金句分享: 选择你所喜欢的,爱你所选择的。』—— 托尔斯泰「托尔斯泰 。 NumPy( Numerical Py

    2024年02月13日
    浏览(71)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包