多维时序 | Matlab实现BiLSTM-Adaboost和BiLSTM多变量时间序列预测对比

这篇具有很好参考价值的文章主要介绍了多维时序 | Matlab实现BiLSTM-Adaboost和BiLSTM多变量时间序列预测对比。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

多维时序 | Matlab实现BiLSTM-Adaboost和BiLSTM多变量时间序列预测对比

预测效果

多维时序 | Matlab实现BiLSTM-Adaboost和BiLSTM多变量时间序列预测对比,时间序列,BiLSTM-Adaboost,BiLSTM,多变量时间序列预测
多维时序 | Matlab实现BiLSTM-Adaboost和BiLSTM多变量时间序列预测对比,时间序列,BiLSTM-Adaboost,BiLSTM,多变量时间序列预测

多维时序 | Matlab实现BiLSTM-Adaboost和BiLSTM多变量时间序列预测对比,时间序列,BiLSTM-Adaboost,BiLSTM,多变量时间序列预测

基本介绍

多维时序 | Matlab实现BiLSTM-Adaboost和BiLSTM多变量时间序列预测对比

模型描述

Matlab实现BiLSTM-Adaboost和BiLSTM多变量时间序列预测对比(完整程序和数据)
1.输入多个特征,输出单个变量;
2.考虑历史特征的影响,多变量时间序列预测;
4.csv数据,方便替换;
5.运行环境Matlab2018b及以上;
6.输出误差对比图。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复Matlab实现BiLSTM-Adaboost和BiLSTM多变量时间序列预测对比获取
  • 完整程序和数据获取方式3(直接下载):Matlab实现BiLSTM-Adaboost和BiLSTM多变量时间序列预测对比。
 
        (32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        dropoutLayer(0.25,'Name','drop2')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0
    mydevice = 'gpu';
else
    mydevice = 'cpu';
end
    options = trainingOptions('adam', ...
        'MaxEpochs',MaxEpochs, ...
        'MiniBatchSize',MiniBatchSize, ...
        'GradientThreshold',1, ...
        'InitialLearnRate',learningrate, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropPeriod',56, ...
        'LearnRateDropFactor',0.25, ...
        'L2Regularization',1e-3,...
        'GradientDecayFactor',0.95,...
        'Verbose',false, ...
        'Shuffle',"every-epoch",...
        'ExecutionEnvironment',mydevice,...
        'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501文章来源地址https://www.toymoban.com/news/detail-682681.html

到了这里,关于多维时序 | Matlab实现BiLSTM-Adaboost和BiLSTM多变量时间序列预测对比的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包