Torch.tensor.backward()方法的使用举例
理解optimizer.zero_grad(), loss.backward(), optimizer.step()的作用及原理文章来源:https://www.toymoban.com/news/detail-683706.html
Autograd: 自动求导文章来源地址https://www.toymoban.com/news/detail-683706.html
import torch
a=torch.randn(2,2) # tensor默认requires_grad=False
a=((a*3)/(a-1))
print(a.requires_grad)
print(a.grad_fn) # leaf tensor的.grad_fn属性为None
b = torch.tensor([4.0, 3.0, 2.0], requires_grad=True)
print(b.requires_grad)
print(b.grad_fn) # leaf tensor的grad_fn属性为None
c = (a*a).sum()
print(c.requires_grad) # 由于a.requires_grad=False,所以c.requires_grad=False
print(c.grad_fn) # 由于自变量tensor,也即a的requires_grad=False,作用在其上的运算不会被跟踪,所以c.grad_fn=None
a.requires_grad_(True) # 通过内置requires_grad_()方法改变其requires_grad属性
print(a.requires_grad) # True
d = (a*a).sum()
print(d.requires_grad) # 由于a.requires_grad=True,所以d.requires_grad=True
print(d.grad_fn) # 由于a.requires_grad=True,所以d.grad_fn有内容
# https://blog.csdn.net/wangweiwells/article/details/101223420
# 但requires_grad属性为True并不意味着可以得到对其的gradient,还要看其是否为leaf tensor
e1 = torch.rand(10, requires_grad=True) + 2
print(e1.requires_grad) # True
print(e1.is_leaf) # False,因为e是由加法运算得到的,所以不是leaf tensor,不能得到对e的梯度
# 但所有requires_grad=False的Tensor都为leaf Tensor(同时也不能得到对它们的梯度)
e2 = torch.rand(10) + 2
print(e2.requires_grad) # False
print(e2.is_leaf) # True
e3 = e2.sum()
print(e3.requires_grad) # False
print(e3.grad_fn) # None
e3.backward() # 由于e3.grad_fn=None,所以此处会报错
# 评估模型等情况下,我们不需要跟踪计算历史或使用内存,此时可用torch.tensor.detach()或以下方法
with torch.no_grad():
print(d.requires_grad) # True
f = (a*a).sum()
print(f.requires_grad) # False
到了这里,关于Pytorch.tensor 相关用法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!