全网首发,人体姿态估计算法在OK3588上部署应用(十三)

这篇具有很好参考价值的文章主要介绍了全网首发,人体姿态估计算法在OK3588上部署应用(十三)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、主机模型转换

采用FastDeploy来部署应用深度学习模型到OK3588板卡上

进入主机Ubuntu的虚拟环境
conda activate ok3588
主机环境搭建可以参考上一篇 《OK3588板卡实现人像抠图(十二)》

生成onnx文件
cd FastDeploy
# 下载Paddle静态图模型并解压
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz

# 静态图转ONNX模型,注意,这里的save_file请和压缩包名对齐
paddle2onnx --model_dir PP_TinyPose_256x192_infer \
            --model_filename model.pdmodel \
            --params_filename model.pdiparams \
            --save_file PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
            --enable_dev_version True

# 固定shape
python -m paddle2onnx.optimize --input_model PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
                                --output_model PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
                                --input_shape_dict "{'image':[1,3,256,192]}"
转换成RKNN模型
python tools/rknpu2/export.py --config_path tools/rknpu2/config/PP_TinyPose_256x192_unquantized.yaml \
                              --target_platform rk3588

把PP_TinyPose_256x192_infer文件夹打包放到OK3588板卡上

二、板卡模型部署

进入虚拟环境
conda activate ok3588
cd FastDeploy/examples/vision/keypointdetection/tiny_pose/rknpu2/cpp
mkdir build
cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=/home/forlinx/FastDeploy/build/fastdeploy-0.0.0/
make -j
得到了编译后的文件 infer_tinypose_demo

三、执行推理

PP_TinyPose_256x192_infer 文件夹放在build里面

NPU推理

sudo ./infer_tinypose_demo PP_TinyPose_256x192_infer pose.jpg

推理结果展示,即便是个钢铁侠模型,还是可以准确的识别出关键点哈

全网首发,人体姿态估计算法在OK3588上部署应用(十三),OK3588,人工智能,pose,OK3588,人体姿态估计文章来源地址https://www.toymoban.com/news/detail-684436.html

到了这里,关于全网首发,人体姿态估计算法在OK3588上部署应用(十三)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • CVPR2023新作:3D人体姿态估计

    Title: 3D Human Pose Estimation via Intuitive Physics Affiliation: Max Planck Institute for Intelligent Systems, Tübingen, Germany Authors: Shashank Tripathi, Lea Müller, Chun-Hao P. Huang, Omid Taheri, Michael J. Black, Dimitrios Tzionas Keywords: 3D human pose estimation, physics engine, intuitive-physics terms, pressure heatmap, stable configuration. Su

    2024年02月16日
    浏览(39)
  • 【姿态估计】MediaPipe部分solution(手势,人体姿态,面部动作)的用法

    Mediapipe介绍 MediaPipe是个基于图形的跨平台框架,用于构建多模式应用的机器学习管道。 MediaPipe可在移动设备,工作站和服务器上跨平台运行,并支持移动GPU加速。使用MediaPipe,可以将应用的机器学习管道构建为模块化组件的图形。 MediaPipe专为机器学习从业者而设计包括研究

    2024年02月01日
    浏览(85)
  • Python+OpenCV+OpenPose实现人体姿态估计(人体关键点检测)

    1、人体姿态估计简介 2、人体姿态估计数据集 3、OpenPose库 4、实现原理 5、实现神经网络 6、实现代码 人体姿态估计(Human Posture Estimation),是通过将图片中已检测到的人体关键点正确的联系起来,从而估计人体姿态。 人体关键点通常对应人体上有一定自由度的关节,比如颈、

    2024年02月04日
    浏览(46)
  • MMPose姿态估计+人体关键点识别效果演示

    1.1 背景 首先姿态估计属于计算机视觉领域的一个基础研究方向。MMPose是基于Pytorch的姿态估计开源算法库,功能全,涵盖的算法多。 1.2 姿态估计的任务分类 维度 :预测的是2D还是3D姿态。 输入格式 :图片 or 视频 姿态的表示形式 :关键点 or 形状等 目标类型 :全身 or 人脸

    2024年01月20日
    浏览(47)
  • 人体姿态估计技术的理解(Human Pose Estimination)

    本人毕设题目是人体姿态估计技术的相关课题,本人按照自己对人体姿态估计技术的学习和理解进行论述,如有不足,请大家指正!!! “姿势估计?……姿势这个词对不同的人可能有不同的含义,但我们不是在讨论阿诺德的经典作品、奥林匹亚或选美表演。那么,姿势估计

    2024年02月11日
    浏览(49)
  • 基于 pytorch-openpose 实现 “多目标” 人体姿态估计

    还记得上次通过 MediaPipe 估计人体姿态关键点驱动 3D 角色模型,虽然节省了动作 K 帧时间,但是网上还有一种似乎更方便的方法。MagicAnimate 就是其一,说是只要提供一张人物图片和一段动作视频 (舞蹈武术等),就可以完成图片人物转视频。 于是我就去官网体验了一下,发现

    2024年01月25日
    浏览(40)
  • YOLOv5姿态估计:HRnet实时检测人体关键点

    前言: Hello大家好,我是Dream。 今天来学习一下 利用YOLOv5进行姿态估计,HRnet与SimDR检测图片、视频以及摄像头中的人体关键点 ,欢迎大家一起前来探讨学习~ 首先需要我们利用Pycharm直接克隆github中的姿态估计原工程文件,如果不知道怎样在本地克隆Pycharm,可以接着往下看,

    2024年01月17日
    浏览(69)
  • Mediapipe人体骨架检测和实时3d绘制——Mediapipe实时姿态估计

    大约两年前,基于自己的理解我曾写了几篇关于Mediapipe的文章,似乎帮助到了一些人。这两年,忙于比赛、实习、毕业、工作和考研。上篇文章已经是一年多前发的了。这段时间收到很多私信和评论,请原谅无法一一回复了。我将尝试在这篇文章里回答一些大家经常问到的问

    2024年02月03日
    浏览(60)
  • YOLOPose:除了目标检测,YOLO还能不花代价地估计人体姿态,对实时性能有要求必看!

    导读: YOLO,是一种流行的目标检测框架。如果将YOLO引入姿态检测任务中,将取得什么结果呢?这篇文章实现了单阶段的2D人体姿态检测,与自上而下或自下而上的方法不同,该方法将人体检测与关键点估计联合实现,在不采用数据增强如翻转、多尺度等情况下,实现COCO ke

    2024年02月06日
    浏览(42)
  • 3D视觉——1.人体姿态估计(Pose Estimation)入门——使用MediaPipe含单帧(Signel Frame)与实时视频(Real-Time Video)

    使用MediaPipe工具包进行开发 MediaPipe是一款由Google Research 开发并开源的多媒体机器学习模型应用框架,用于处理视频、音频等时间序列数据。这个跨平台架构使用于桌面/服务器、Android、iOS和嵌入式设备等。 我们使用MeidaPipe下的Solutions(方案特定的模型),共有16个Solutions: 人

    2024年01月18日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包