2017年MathorCup数学建模A题流程工业的智能制造解题全过程文档及程序

这篇具有很好参考价值的文章主要介绍了2017年MathorCup数学建模A题流程工业的智能制造解题全过程文档及程序。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

2017年第七届MathorCup高校数学建模挑战赛

A题 流程工业的智能制造

原题再现:

  “中国制造 2025”是我国制造业升级的国家大战略。其技术核心是智能制造,智能化程度相当于“德国工业 4.0”水平。“中国制造 2025”的重点领域既包含重大装备的制造业,也包含新能源、新材料制造的流程工业。
  在流程工业中,钢铁冶金,石油化工等行业是代表性的国民经济支柱性产业。其生产过程的系统优化与智能控制的目标函数包括节能,优质,低耗,绿色环保等多目标要求。为了实现这样的优化目标,生产过程智能控制的关键技术就要从原来的反馈控制进一步升级为预测控制。即通过生产工艺大数据的信息物理系统(Cyber Physical System)建模,通过大数据挖掘,确定生产过程的最佳途径与最佳参数控制范围,预测性地动态调整生产过程控制,获得最佳生产效果。
  以高炉冶炼优质铁水为例,高炉炼铁过程是按加料顺序由高炉顶部加入矿石和焦炭等原燃料,由高炉下部连续鼓入热风、喷入煤粉进行炉温调整的冶炼过程。从原燃料炉顶加入,到冶炼成炉渣和铁水,其冶炼周期 6-8 小时。而高炉每经过2 小时就出渣、出铁一次。并且化验得到此次出铁的铁水与炉渣的化学成分。因此,前后两炉铁水含硅量,即炉温之间是具有相关性的。炼铁过程是一个离散加入,连续冶炼,离散输出的复杂生产过程。
  炼铁过程的机理既包含由热平衡/物料平衡约束的化学反应过程,也包括由三相流体动力学混合的物理运动过程。因此完整的冶炼过程机理模型是一个由代数方程组和偏微分方程组构成的复杂数学模型,模型方程如下:
2017mathorcup,数学建模,笔记,mathorcup数学建模竞赛,制造,人工智能,mathorcup数学建模,数学建模
  从机理上求解上述混合动力学方程组的最优解是尚未解决的数学难题。因此,通过大数据的数据挖掘技术对其进行过程优化是一条可行的求解途径。
  炼铁过程依时间顺序采集的工艺参数是一个高维的大数据时间序列。影响因素数以百计。其终极生产指标产量、能耗、铁水质量等指标都与冶炼过程的一项控制性中间指标——炉温,即铁水含硅量[Si](铁水含硅质量百分数)密切相关。对 2 小时后或 4 小时后高炉炉温上升或下降的预测,即[Si]时间序列的预测关系着当前高炉各项操作参数的调控方向。因此,[Si]的准确预测控制建模成为冶炼过程优化与预测控制的关键技术。
  为了简化问题,本项目仅提供由铁水含硅量[Si]、含硫量[S]、喷煤量 PML和鼓风量 FL 组成的数据库作为数学建模分析和数据挖掘的基础。序号 N 既是数据序列的序号,其实也是高炉出铁时间的顺序序号。
  本课题数学建模的要求是:
  (1)从给定数据表中[Si]-[S]-FL-PML 依序号排列的 1000 炉生产大数据中,自主选取学习样本和算法,建立[Si]预测动态数学模型,包括一步预测模型和二步预测模型。全面论述你的数学建模思路。
  (2)自主选取验证样本,验证你所建立的数学模型的预测成功率。包括数值预测成功率和炉温升降方向预测成功率。并且讨论其动态预测控制的可行性。
  (3)以质量指标铁水含硫量[S]为例,含硫量低,铁水质量好,可以生产优质钢,制造优质装备。试建立质量指标[S]的优化数学模型,并且讨论按照优化模型计算结果进行[Si]预测控制的预期效果。
  (4)讨论你所建立的复杂流程工业智能控制大数据建模的心得体会。

2017mathorcup,数学建模,笔记,mathorcup数学建模竞赛,制造,人工智能,mathorcup数学建模,数学建模

整体求解过程概述(摘要)

  在我国制造业升级“中国制造 2025”的国家战略下,为了预测控制高炉炼铁过程,本文建立了神经网络预测模型、混沌时间序列预测模型,并基于遗传算法(GA)改进了神经网络模型,使用粒子群算法(PSO)优化了含硫量[S]。
  针对问题一,首先,本文对附件所给数据进行了数据预处理,剔除了异常值并归一化,得到 932 组有效数据。然后,建立 BP 神经网络预测模型预测了含硅量[Si],并分析了含硅量[Si]、含硫量[S]、鼓风量 FL 和喷煤量 PML 之间的相关性。其次,建立了小波神经网络预测模型和遗传算法(GA)优化的 BP 神经网络预测模型,并比较了三者优劣。接着,选取训练样本数据 922 组,验证样本数据 10 组,发现遗传算法优化的 BP 神经网络预测模型和小波神经网络预测模型预测效果较好,BP 神经网络预测模型较差。最后,本文建立了混沌时间序列预测模型,并对含硅量[Si]进行了混沌局部线性一步预测和二步预测。
  针对问题二,首先,本文选取了 922 组数据作为训练样本,10 组数据作为验证样本,将传统的 BP 神经网络预测模型、小波神经网络模型预测模型、基于遗传算法优化 BP 神经网络预测模型和混沌时间序列预测模型,分别预测后 10炉次含硅量[Si]的结果与实际值进行对比,计算得到:BP 预测成功率为 20%,小波预测为 70%,GA+BP 预测为 60%,混沌预测为 80%。其次,通过不同的模型分别预测了后 10 炉次含硅量[Si]的结果,预测了炉温升降方向,计算得到:BP预测成功率为 40%,小波预测为 100%,GA+BP 预测为 100%,混沌预测为 100%。最后,通过讨论神经网络训练函数的选取、神经网络性能参数的设定与混沌时间
序列预测邻域半径的选取,分析了动态预测控制的可行性。
  针对问题三,首先,本文根据遗传算法(GA)优化 BP 神经网络的预测模型,预测了含硫量[S],并找出了含硫量[S]与含硅量[Si]、鼓风量 FL 和喷煤量 PML之间的关系。然后,本文使用粒子群算法(PSO)优化了含硫量[S],得出当鼓风量归一化后 FL=0.7012 和喷煤量 PML=0.0809 时,含硫量[S]有最小值。最后,本文分析了在含硫量[S]最优条件下,预测控制含硅量[Si]的预期效果,在含硫量[S]取最小值时,预测到此时含硅量[Si]较小,为 0.5712。
  针对问题四,我们结合建模背景、求解模型所得结果与分析结果所得结论,根据复杂流程工业智能控制的意义,浅谈了建模的心得体会。通过大数据挖掘,我们可以确定生产过程的最佳途径与最佳参数范围,获得最佳生产效果。

模型假设:

  (1)假设在混沌局部线性预测中,邻域ε的选取客观准确,主观性较小。
  (2)假设在混沌局部线性预测中,局部特性可以准确代表整体特性。
  (3)假设在神经网络预测中,输入变量作为网络的第一层合理有效。
  (4)假设附件中提供的数据及所使用的数据都真实准确。
  (5)假设铁水含硅量[Si]、含硫量[S]、喷煤量 PML 和鼓风量 FL 组成的数据能代表高炉炼铁过程,体现高炉炼铁特性。

问题分析:

  问题一的分析:在问题一中,题目要求我们从给定数据表中[Si]-[S]-FL-PML依序号排列的 1000 炉生产大数据中,自主选取学习样本和算法,建立[Si]预测动态数学模型,包括一步预测模型和二步预测模型。其中的一步预测模型和二步预测模型指的是预测步长分别取 1 和 2,前后两炉铁水含硅量,即炉温之间是具有相关性的。这里的学习样本不能是全部的 1000 炉生产大数据,因为问题二中需要我们验证所建立的数学模型的预测成功率,所以不能选择全部数据来训练,只能选择一部分数据来学习训练。至于建模的算法,需要结合问题本身来选择。
  问题二的分析:在问题二中,题目要求我们自主选取验证样本,验证我们所建立的数学模型的预测成功率,包括数值预测成功率和炉温升降方向预测成功率。并且讨论其动态预测控制的可行性。我们需要从 1000 炉生产大数据中剩下未学习训练的数据中,选取验证样本,验证包括[Si]含量和炉温升降方向的成功率。难点在于讨论其动态预测控制的可行性,以及如何提高算法的预测成功率。
  问题三的分析:在问题三中,题目要求我们以质量指标铁水含硫量[S]为例,含硫量低,铁水质量好,可以生产优质钢,制造优质装备。试建立质量指标[S]的优化数学模型,并且讨论按照优化模型计算结果进行[Si]预测控制的预期效果。通过大数据挖掘,确定生产过程的最佳途径与最佳参数控制范围,预测性地动态调整生产过程控制,获得最佳生产效果,建立优化模型,讨论对[Si]的预测控制。
  问题四的分析:在问题四中,题目要求我们讨论我们所建立的复杂流程工业智能控制大数据建模的心得体会,这需要结合我们模型的结果和背景来讨论。

模型的建立与求解整体论文缩略图

2017mathorcup,数学建模,笔记,mathorcup数学建模竞赛,制造,人工智能,mathorcup数学建模,数学建模
2017mathorcup,数学建模,笔记,mathorcup数学建模竞赛,制造,人工智能,mathorcup数学建模,数学建模
2017mathorcup,数学建模,笔记,mathorcup数学建模竞赛,制造,人工智能,mathorcup数学建模,数学建模

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:(代码和文档not free)

The actual procedure is shown in the screenshot文章来源地址https://www.toymoban.com/news/detail-684878.html

 1 def BP(sampleinnorm, sampleoutnorm,hiddenunitnum=3):                       
 2     # 超参数
 3     maxepochs = 60000                                       # 最大迭代次数
 4     learnrate = 0.030                                       # 学习率
 5     errorfinal = 0.65*10**(-3)                              # 最终迭代误差
 6     indim = 3                                               # 输入特征维度3
 7     outdim = 2                                              # 输出特征唯独2
 8     # 隐藏层默认为3个节点,1层
 9     n,m = shape(sampleinnorm)
10     w1 = 0.5*np.random.rand(hiddenunitnum,indim)-0.1        #8*3维
11     b1 = 0.5*np.random.rand(hiddenunitnum,1)-0.1            #8*1维
12     w2 = 0.5*np.random.rand(outdim,hiddenunitnum)-0.1       #2*8维
13     b2 = 0.5*np.random.rand(outdim,1)-0.1                   #2*1维
14 
15     errhistory = []
16 
17     for i in range(maxepochs):
18         # 激活隐藏输出层
19         hiddenout = sigmod((np.dot(w1,sampleinnorm).transpose()+b1.transpose())).transpose()
20         # 计算输出层输出
21         networkout = (np.dot(w2,hiddenout).transpose()+b2.transpose()).transpose()
22         # 计算误差
23         err = sampleoutnorm - networkout
24         # 计算代价函数(cost function)sum对数组里面的所有数据求和,变为一个实数
25         sse = sum(sum(err**2))/m                                
26         errhistory.append(sse)
27         if sse < errorfinal:                                    #迭代误差
28           break
29         # 计算delta
30         delta2 = err
31         delta1 = np.dot(w2.transpose(),delta2)*hiddenout*(1-hiddenout)
32         # 计算偏置
33         dw2 = np.dot(delta2,hiddenout.transpose())
34         db2 = 1 / 20 * np.sum(delta2, axis=1, keepdims=True)
35 
36         dw1 = np.dot(delta1,sampleinnorm.transpose())
37         db1 = 1/20*np.sum(delta1,axis=1,keepdims=True)
38 
39         # 更新权值
40         w2 += learnrate*dw2
41         b2 += learnrate*db2
42         w1 += learnrate*dw1
43         b1 += learnrate*db1
44 
45     return errhistory,b1,b2,w1,w2,maxepochs
import numpy as np
#定义激活函数
def sigmoid(x,deriv=False):
    if deriv == True:
        return x*(1-x)
    return 1/(1+np.exp(-x))
x = np.array([[0,0,0],[0,1,1],[1,0,1],[0,0,1],[0,0,1]])
print(x.shape)
#指定label值
y = np.array([[0],[1],[1],[0],[0]])
print(y.shape)
#指定随机化种子,使得每次随机值一样
np.random.seed(1)
#定义三层的神经网络
w0 = 2*np.random.random((3,4)) - 1
w1 = 2*np.random.random((4,1)) - 1
print(w0)
print(w1)
for j in range(6000):
    l0 = x
    l1 = sigmoid(np.dot(l0,w0))
    l2 = sigmoid(np.dot(l1,w1))
    #真实值-预测值
    l2_error = y - l2
    if j%1000 == 0 :
        print("error"+str(np.mean(np.abs(l2_error))))
    l2_delta = l2_error*sigmoid(l2,deriv=True)
    l1_error = l2_delta.dot(w1.T)
    l1_delta = l1_error*sigmoid(l1,deriv=True)
    #更新w0 w1
    w1 += l1.T.dot(l2_delta)
    w0 += l0.T.dot(l1_delta)
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

到了这里,关于2017年MathorCup数学建模A题流程工业的智能制造解题全过程文档及程序的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 国赛 mathorcup数学建模竞赛中的优化问题

    数学建模优化类题目主要是通过数学工具和方法,对现实问题进行建模,并找到最优的解决方案。下面介绍一些常见的分析及解题思路。 1. 确定问题的目标函数和约束条件:首先,需要明确问题的目标,包括最大化或最小化某种指标,如最大利润、最小成本等。同时,还要

    2024年01月21日
    浏览(54)
  • 2022 年 MathorCup 高校数学建模挑战赛A题

    赛道 A:“58 到家”家政服务订单分配问题         “58 到家”是“58 同城”旗下高品质、高效率的上门家政服务平台,平 台向用户提供家政保洁、保姆、月嫂、搬家、维修等众多生活领域的服务。 在家政保洁场景中,用户在平台下单购买服务后,平台会将订单分配给一

    2024年02月10日
    浏览(47)
  • 2023mathorcup大数据数学建模竞赛A题完整论文讲解

    大家好呀,从发布赛题一直到现在,总算完成了2023mathorcup大数据数学建模竞赛A题完整的成品论文。 本论文可以保证原创,保证高质量。绝不是随便引用一大堆模型和代码复制粘贴进来完全没有应用糊弄人的垃圾半成品论文。 论文共67页,一些修改说明9页,正文52页,附录

    2024年02月06日
    浏览(45)
  • 2023Mathorcup(妈妈杯)数学建模竞赛注意事项与模型分析

    一、比赛时间 2023年4月13号早08:00-4月17号09:00 二、比赛介绍 本次Mathorcup比赛时间和往年不同,往年比赛时间为3天,本次比赛时间一共有4天,这也说明了Mathorcup也在逐渐的增加难度,作为一个仅次于国赛/美赛和华为杯的全国性竞赛,题目是存在难度的,主要以运筹学为主,

    2024年02月07日
    浏览(38)
  • 2023年MathorCup数学建模ABCD题初步思路分析&选题建议

    更多思路见文末获取! MathorCup俗称妈杯,是除了美赛国赛外参赛人数首屈一指的比赛,而我们的妈杯今天也如期开赛。今年的妈杯难度,至少在我看来应该是2023年截至目前来讲最难的一场比赛。问题的设置、背景的选取等各个方面都吐露着我要难死你们的想法。难度是恒定

    2024年02月06日
    浏览(60)
  • 2023MathorCup 高校数学建模挑战赛D题思路解析

    如下为MathorCup 高校数学建模挑战赛D题思路解析: D 题 航空安全风险分析和飞行技术评估问题 飞行安全是民航运输业赖以生存和发展的基础。随着我国民航业的快速发展,针对飞行安全问题的研究显得越来越重要。2022 年 3 月 21 日,“3.21”空难的发生终结了中国民航安全飞

    2023年04月16日
    浏览(46)
  • 2022mathorcup数学建模大数据竞赛选题建议及初步思路来啦!

    大家好呀,mathorcup大数据赛今天下午六点开赛了,我先给大家带来一个初步的选题建议及思路哈, 需要后续完整成品的可以直接点击本文章最下面的卡片哈。 OK废话不多说,本次mathorcup大数据赛时间跨度是很长的,一共一个月时间。 先定下主基调,本次难度上B<A,A题只建

    2024年02月08日
    浏览(39)
  • 2023第十三届MathorCup高校数学建模挑战赛C题解析

    C 题 电商物流网络包裹应急调运与结构优化问题 电商物流网络由物流场地(接货仓、分拣中心、营业部等)和物流场地之间的运输线路组成,如图 1 所示。受节假日和“双十一”、“618”等促销活动的影响,电商用户的下单量会发生显著波动,而疫情、地震等突发事件导致物

    2023年04月22日
    浏览(66)
  • 2023 MathorCup(妈妈杯) 数学建模挑战赛B题完整解题思路+模型+代码

    2023妈妈杯数学建模B题完整版思路、模型代码已出!!! 云顶数模最新完整版解题思路、模型代码,供大家参考~~ B题目 解题思路 详细模型解析:

    2024年02月08日
    浏览(79)
  • 2023年MathorCup高校数学建模挑战赛大数据挑战赛赛题浅析

    比赛时长为期7天的妈杯大数据挑战赛如期开赛,为了帮助大家更好的选题,首先给大家带来赛题浅析,为了方便大家更好的选题。 赛道 A:基于计算机视觉的坑洼道路检测和识别 A题,图像处理类题目。这种题目的难度数模独一档,有图像处理经验的可以尝试。正常并不推荐

    2024年02月08日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包