描述点云特征提取中法线和曲率计算、特征值分析、PFH、FPFH、3D Shape Context、Spin Image的算法原理

这篇具有很好参考价值的文章主要介绍了描述点云特征提取中法线和曲率计算、特征值分析、PFH、FPFH、3D Shape Context、Spin Image的算法原理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

法线和曲率计算:点云法线和曲率是点云数据特征提取的基础,可以通过最小二乘拟合或基于协方差矩阵的方法计算。对于每个点,根据周围点的位置和构成法向量,可以计算出该点的法向量和曲率。
特征值分析(Eigenvalue Analysis):特征值分析是一种方法,用于计算点云数据中的主曲率和主方向。它通过求解协方差矩阵的特征向量和特征值,来确定点云数据的主方向和主曲率。
PFH(Point Feature Histogram):PFH算法是一种基于直方图的点云特征提取算法,能够描述点与周围点之间的关系。它通过计算点对之间的法线差异、距离和角度,来表示点云数据中的局部形状特征。
FPFH(Fast Point Feature Histogram):FPFH算法是PFH算法的改进,能够在更短的时间内计算点云数据的特征。它通过计算点对之间的法线差异、距离和角度,并加入点的法向量信息,来描述点云数据中的局部形状特征。
3D Shape Context:3D Shape Context算法是一种基于点云数据的全局特征提取算法,能够描述点云数据的形状和结构信息。它通过计算点与周围点之间的距离、角度和方向关系,来构建点云数据的特征向量。
Spin Image:Spin Image算法是一种基于图像描述符的点云特征提取算法,能够描述点云数据中的局部形状特征。它通过将点云投影到二维图像平面上,并计算每个像素点的灰度直方图,来表示点云数据的特征。
这些算法都是常用的点云特征提取算法,可以根据具体应用需求选择合适的算法来提取点云数据的特征。文章来源地址https://www.toymoban.com/news/detail-685364.html

到了这里,关于描述点云特征提取中法线和曲率计算、特征值分析、PFH、FPFH、3D Shape Context、Spin Image的算法原理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 点云特征提取算法之ISS

    代码链接 : ISS Github链接:有关于环境感知方面的网络介绍及代码链接 特征点的定义参考这篇博文角点(corner point)、关键点(key point)、特征点(feature point): 在图像处理中,所谓“特征点”,主要指的就是能够在 其他 含有相同场景或目标的 相似图像 中以一种 相同的或至少非

    2024年02月05日
    浏览(42)
  • Lesson4-1:OpenCV图像特征提取与描述---角点特征

    学习目标 理解图像的特征 知道图像的角点 1 图像的特征 大多数人都玩过拼图游戏。首先拿到完整图像的碎片,然后把这些碎片以正确的方式排列起来从而重建这幅图像。如果把拼图游戏的原理写成计算机程序,那计算机就也会玩拼图游戏了。 在拼图时,我们要寻找一些唯一

    2024年02月10日
    浏览(38)
  • 【数值分析】用幂法计算矩阵的主特征值和对应的特征向量(附matlab代码)

    用幂法计算下列矩阵的按模最大特征值及对应的特征向量 k= 1 V^T= 8 6 0 m= 8 u^T= 1.0000 0.7500 0 k= 2 V^T= 9.2500 6.0000 -2.7500 m= 9.2500 u^T= 1.0000 0.6486 -0.2973 k= 3 V^T= 9.5405 5.8919 -3.5405 m= 9.5405 u^T= 1.0000 0.6176 -0.3711 k= 4 V^T= 9.5949 5.8414 -3.7309 m= 9.5949 u^T= 1.0000 0.6088 -0.3888 k= 5 V^T= 9.6041 5.8240 -3.7753 m=

    2024年02月01日
    浏览(44)
  • 【OpenCV4】计算对称矩阵特征值和特征向量 cv::eigen() 用法详解和代码示例(c++)

    解析: src:输入矩阵,只能是 CV_32FC1 或 CV_64FC1 类型的方阵(即矩阵转置后还是自己) eigenvalues:输出的特征值组成的向量,数据类型同输入矩阵,排列从大到小 eigenvectors:输出的特征向量组成的矩阵,数据类型同输入矩阵,每一行是一个特征向量,对应相应位置的特征值

    2024年02月13日
    浏览(49)
  • Python点云处理(五)点云特征点/关键点提取算法(上)

    上一篇介绍了几种常见的点云下采样算法,这些算法得到的点云都不会强化特征,因为其计算原理要么是随机要么是根据格网或半径方式。 点云关键点提取是指从一个点云数据集中提取出一些重要的点,以便用于后续的点云分析和处理。 在点云处理中,关键点通常包括高曲

    2024年02月11日
    浏览(40)
  • Lesson4-3:OpenCV图像特征提取与描述---SIFT/SURF算法

    学习目标 理解 S I F T / S U R F SIFT/SURF S I FT / S U RF 算法的原理, 能够使用 S I F T / S U R F SIFT/SURF S I FT / S U RF 进行关键点的检测 1.1 SIFT原理 前面两节我们介绍了 H a r r i s Harris H a rr i s 和 S h i − T o m a s i Shi-Tomasi S hi − T o ma s i 角点检测算法,这两种算法具有旋转不变性,但不具

    2024年02月09日
    浏览(52)
  • 基于深度学习的人工林地面激光扫描点云立木特征参数提取方法

    Paper题目:A Deep Learning-Based Method for Extracting Standing Wood Feature Parameters from Terrestrial Laser Scanning Point Clouds of Artificially Planted Forest 利用基于三维点云的技术量化立木和立木参数,可以在林业生态效益评估和立木培育和利用中发挥关键作用。随着光探测与测距(LiDAR)扫描等三维信

    2024年02月05日
    浏览(39)
  • opencv 进阶15-检测DoG特征并提取SIFT描述符cv2.SIFT_create()

    前面我们已经了解了Harris函数来进行角点检测,因为角点的特性,这些角点在图像旋转的时候也可以被检测到。但是,如果我们放大或缩小图像时,就可能会丢失图像的某些部分,甚至有可能增加角点的质量。这种损失的现象需要一种与图像比例无关的角点检测方法来解决。

    2024年02月11日
    浏览(52)
  • 描述点云关键点提取ISS3D、Harris3D、NARF、SIFT3D算法原理

    ISS3D(Intrinsic Shape Signatures 3D ):ISS3D算法是一种基于曲率变化的点云关键点提取算法。它通过计算每个点与其近邻点的曲率变化,得到该点的稳定性和自适应尺度,从而提取稳定性和尺度合适的关键点。 Harris3D :Harris3D算法是一种基于协方差矩阵的点云关键点提取算法。它通

    2024年01月25日
    浏览(42)
  • 计算机视觉基础(5)——特征点及其描述子

    本文我们将学习到 特征点及其描述子 。在特征点检测中,我们将学习 角点检测和SIFT关键点检测器 ,角点检测以 哈里斯角点检测器 为例进行说明,SIFT将从 高斯拉普拉斯算子和高斯差分算子 展开。在描述子部分,我们将分别学习 SIFT描述子和二进制描述子 的概念、基本计算

    2024年02月03日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包