UPA/URA双极化天线的协方差矩阵结构

这篇具有很好参考价值的文章主要介绍了UPA/URA双极化天线的协方差矩阵结构。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

UPA的阵列响应向量(暂不考虑双极化天线)

下图形象描述了UPA阵列的接收信号

upa天线,矩阵

UPA阵列的水平(Horizontal)方向的天线间距为 d H d_H dH,垂直(Vertical)方向的天线间距为 d V d_V dV,图中BA是点A处的阵元接收到的信号方向,我们需要衡量水平、垂直两个方向的路径差。

(1)水平方向的路径差
考虑三角形OAB,我们从图中可以看出三个点的坐标分别为: ( 0 , 0 , 0 ) , ( d H , 0 , 0 ) , ( r cos ⁡ ϕ sin ⁡ θ + d H , r cos ⁡ ϕ cos ⁡ θ , r sin ⁡ ϕ ) (0,0,0),(d_H,0,0),(r \cos \phi \sin \theta + d_H, r \cos \phi \cos \theta, r \sin \phi) (0,0,0),(dH,0,0),(rcosϕsinθ+dH,rcosϕcosθ,rsinϕ),可以进一步计算该三角形三条边的长度
O A = d H O B = ∣ ( r cos ⁡ ϕ sin ⁡ θ + d H , r cos ⁡ ϕ cos ⁡ θ , r sin ⁡ ϕ ) ∣ A B = r \begin{aligned} OA &= d_H \\ OB &= \left | (r \cos \phi \sin \theta + d_H, r \cos \phi \cos \theta, r \sin \phi) \right| \\ AB &= r \end{aligned} OAOBAB=dH=(rcosϕsinθ+dH,rcosϕcosθ,rsinϕ)=r

根据三角余弦定理,我们可以得到
cos ⁡ ∠ O A B = ∣ A B ∣ 2 + ∣ O A ∣ 2 − ∣ O B ∣ 2 2 ∣ A B ∣ ⋅ ∣ O A ∣ = r 2 + d H 2 − ( r 2 + d H 2 + 2 d H r cos ⁡ ϕ sin ⁡ θ ) 2 r d H = cos ⁡ ϕ sin ⁡ θ \begin{aligned} \cos {\angle {OAB}} &= \frac { |AB|^2 + |OA|^2 - |OB|^2 }{2 |AB| \cdot |OA|} \\ &= \frac{ r^2 + d^2_H - (r^2 + d^2_H+ 2 d_H r \cos \phi \sin \theta) } {2 r d_H} \\ &= \cos \phi \sin \theta \end{aligned} cosOAB=2∣ABOAAB2+OA2OB2=2rdHr2+dH2(r2+dH2+2dHrcosϕsinθ)=cosϕsinθ

因此水平方向的路径差为:
Δ H = d H cos ⁡ ∠ O A B = d H cos ⁡ ϕ sin ⁡ θ \Delta_H = d_H \cos {\angle {OAB}} = d_H \cos \phi \sin \theta ΔH=dHcosOAB=dHcosϕsinθ

(2)垂直方向的路径差
不难看出,垂直方向的路径差为
Δ V = d V sin ⁡ ϕ \Delta_V= d_V \sin \phi ΔV=dVsinϕ

因此阵列响应向量对应的延时(相位)部分可以表征为:
Ψ ( u − 1 ) N H + v ( ϕ , θ ) = 2 π λ [ ( u − 1 ) d V sin ⁡ ϕ + ( v − 1 ) d H cos ⁡ ϕ sin ⁡ θ ] \Psi_{(u-1)N_H+v}(\phi, \theta) = \frac{2 \pi}{\lambda} \left [ (u-1) d_V \sin \phi + (v-1)d_H \cos \phi \sin \theta \right] Ψ(u1)NH+v(ϕ,θ)=λ2π[(u1)dVsinϕ+(v1)dHcosϕsinθ]

其中 1 ≤ u ≤ N V , 1 ≤ v ≤ N H 1 \leq u \leq N_V, 1 \leq v \leq N_H 1uNV,1vNH

为了与论文[1]的符号对齐,这里我们令
cos ⁡ θ 1 = sin ⁡ ϕ sin ⁡ θ 2 = sin ⁡ θ \begin{aligned} \cos \theta_1 &= \sin \phi \\ \sin \theta_2&= \sin \theta \end{aligned} cosθ1sinθ2=sinϕ=sinθ

θ = ( θ 1 , θ 2 ) T \boldsymbol \theta = (\theta_1, \theta_2)^T θ=(θ1,θ2)T,这时UPA阵列响应向量中含相位的项为
e j Ψ ( θ ) : = [ e j Ψ 1 ( θ ) , e j Ψ 2 ( θ ) , ⋯   , e j Ψ N V N H ( θ ) ] T ∈ C N V N H × 1 e^{j \boldsymbol \Psi(\boldsymbol \theta)} := \left [ e^{j \Psi_1(\boldsymbol \theta)}, e^{j \Psi_2(\boldsymbol \theta)}, \cdots, e^{j \Psi_{N_V N_H}(\boldsymbol \theta)} \right]^T \in \mathbb C^{N_V N_H \times 1} ejΨ(θ):=[ejΨ1(θ),ejΨ2(θ),,ejΨNVNH(θ)]TCNVNH×1

其中:
Ψ ( u − 1 ) N H + v ( θ ) = 2 π λ [ ( u − 1 ) d V cos ⁡ θ 1 + ( v − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] ,    1 ≤ u ≤ N V , 1 ≤ v ≤ N H \Psi_{(u-1)N_H+v}(\boldsymbol \theta) = \frac{2 \pi}{\lambda} \left [ (u-1) d_V \cos \theta_1 + (v-1)d_H \sin \theta_1 \sin \theta_2 \right], \ \ 1 \leq u \leq N_V, 1 \leq v \leq N_H Ψ(u1)NH+v(θ)=λ2π[(u1)dVcosθ1+(v1)dHsinθ1sinθ2],  1uNV,1vNH

更进一步,UPA阵列响应向量为(包含水平方向和垂直方向):
a V ( θ ) = a V ( θ ) e j Ψ ( θ ) ∈ C N V N H × 1 a H ( θ ) = a H ( θ ) e j Ψ ( θ ) ∈ C N V N H × 1 \begin{aligned} \boldsymbol a_V (\boldsymbol \theta) &= a_V(\boldsymbol \theta) e^{j \boldsymbol \Psi(\boldsymbol \theta)} \in \mathbb C^{N_V N_H \times 1} \\ \boldsymbol a_H (\boldsymbol \theta) &= a_H(\boldsymbol \theta) e^{j \boldsymbol \Psi(\boldsymbol \theta)} \in \mathbb C^{N_V N_H \times 1} \\ \end{aligned} aV(θ)aH(θ)=aV(θ)ejΨ(θ)CNVNH×1=aH(θ)ejΨ(θ)CNVNH×1

其中 a V ( θ ) , a H ( θ ) ∈ R a_V(\boldsymbol \theta),a_H(\boldsymbol \theta) \in \mathbb R aV(θ),aH(θ)R表示天线本身的field pattern(对应幅度的概念)。

UPA阵列响应:从单极化天线到双极化天线

注意到,上一章节所推演的阵列响应响应为单极化UPA阵列。对于双极化UPA,其阵列响应向量定义为
a V ( θ ) = [ a V , 1 ( θ ) a V , 2 ( θ ) ] ⊗ e j Ψ ( θ ) ∈ C 2 N V N H × 1 a H ( θ ) = [ a H , 1 ( θ ) a H , 2 ( θ ) ] ⊗ e j Ψ ( θ ) ∈ C 2 N V N H × 1 \begin{aligned} \boldsymbol a_V (\boldsymbol \theta) &= \left[ \begin{array}{c} a_{V,1}\left( \boldsymbol{\theta } \right)\\ a_{V,2}\left( \boldsymbol{\theta } \right)\\ \end{array} \right] \otimes e^{j \boldsymbol \Psi(\boldsymbol \theta)} \in \mathbb C^{2 N_V N_H \times 1} \\ \boldsymbol a_H (\boldsymbol \theta) &= \left[ \begin{array}{c} a_{H,1}\left( \boldsymbol{\theta } \right)\\ a_{H,2}\left( \boldsymbol{\theta } \right)\\ \end{array} \right] \otimes e^{j \boldsymbol \Psi(\boldsymbol \theta)} \in \mathbb C^{2 N_V N_H \times 1} \end{aligned} aV(θ)aH(θ)=[aV,1(θ)aV,2(θ)]ejΨ(θ)C2NVNH×1=[aH,1(θ)aH,2(θ)]ejΨ(θ)C2NVNH×1

其中 a V , 1 , a V , 2 ∈ R a_{V,1},a_{V,2} \in \mathbb R aV,1,aV,2R分别表示垂直方向上, + 45 ° +45 \degree +45° − 45 ° -45 \degree 45°极化天线的field pattern,为天线固有的值,不受环境影响。

UPA双极化天线的协方差矩阵结构

双极化UPA阵列的协方差矩阵为
R = ∫ Ω ρ V ( θ ) a V ( θ ) a V H ( θ ) d θ + ∫ Ω ρ H ( θ ) a H ( θ ) a H H ( θ ) d θ ∈ C 2 N V N H × 2 N V N H \boldsymbol R= \int_{\Omega} \rho_V(\boldsymbol \theta) \boldsymbol a_V(\boldsymbol \theta) \boldsymbol a_V^H(\boldsymbol \theta) d \boldsymbol \theta + \int_{\Omega} \rho_H(\boldsymbol \theta) \boldsymbol a_H(\boldsymbol \theta) \boldsymbol a_H^H(\boldsymbol \theta) d \boldsymbol \theta \in \mathbb C^{2 N_V N_H \times 2 N_V N_H} R=ΩρV(θ)aV(θ)aVH(θ)dθ+ΩρH(θ)aH(θ)aHH(θ)dθC2NVNH×2NVNH

不失一般性,这里我们只关注 a V ( θ ) a V H ( θ ) \boldsymbol a_V(\boldsymbol \theta) \boldsymbol a_V^H(\boldsymbol \theta) aV(θ)aVH(θ)
a V ( θ ) a V H ( θ ) = ( [ a V , 1 ( θ ) a V , 2 ( θ ) ] ⊗ e j Ψ ( θ ) ) ( [ a V , 1 ( θ ) a V , 2 ( θ ) ] ⊗ e j Ψ ( θ ) ) H = ( [ a V , 1 ( θ ) a V , 2 ( θ ) ] ⊗ e j Ψ ( θ ) ) ( [ a V , 1 ( θ ) a V , 2 ( θ ) ] T ⊗ ( e j Ψ ( θ ) ) H ) = [ a V , 1 2 ( θ ) a V , 1 ( θ ) a V , 2 ( θ ) a V , 2 ( θ ) a V , 1 ( θ ) a V , 2 2 ( θ ) ] ⊗ ( e j Ψ ( θ ) ( e j Ψ ( θ ) ) H ) \begin{aligned} \boldsymbol a_V(\boldsymbol \theta) \boldsymbol a_V^H(\boldsymbol \theta) &= \left ( \left[ \begin{array}{c} a_{V,1}\left( \boldsymbol{\theta } \right)\\ a_{V,2}\left( \boldsymbol{\theta } \right)\\ \end{array} \right] \otimes e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right) \left ( \left[ \begin{array}{c} a_{V,1}\left( \boldsymbol{\theta } \right)\\ a_{V,2}\left( \boldsymbol{\theta } \right)\\ \end{array} \right] \otimes e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right)^H \\ &=\left ( \left[ \begin{array}{c} a_{V,1}\left( \boldsymbol{\theta } \right)\\ a_{V,2}\left( \boldsymbol{\theta } \right)\\ \end{array} \right] \otimes e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right) \left ( \left[ \begin{array}{c} a_{V,1}\left( \boldsymbol{\theta } \right)\\ a_{V,2}\left( \boldsymbol{\theta } \right)\\ \end{array} \right]^T \otimes \left( e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right )^H \right) \\ &= \left[ \begin{matrix} a_{V,1}^{2}\left( \boldsymbol{\theta } \right)& a_{V,1}\left( \boldsymbol{\theta } \right) a_{V,2}\left( \boldsymbol{\theta } \right)\\ a_{V,2}\left( \boldsymbol{\theta } \right) a_{V,1}\left( \boldsymbol{\theta } \right)& a_{V,2}^{2}\left( \boldsymbol{\theta } \right)\\ \end{matrix} \right] \otimes \left ( e^{j \boldsymbol \Psi(\boldsymbol \theta)} \left( e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right )^H \right) \end{aligned} aV(θ)aVH(θ)=([aV,1(θ)aV,2(θ)]ejΨ(θ))([aV,1(θ)aV,2(θ)]ejΨ(θ))H=([aV,1(θ)aV,2(θ)]ejΨ(θ))([aV,1(θ)aV,2(θ)]T(ejΨ(θ))H)=[aV,12(θ)aV,2(θ)aV,1(θ)aV,1(θ)aV,2(θ)aV,22(θ)](ejΨ(θ)(ejΨ(θ))H)

我们不难看出,协方差矩阵 R ∈ C 2 N V N H × 2 N V N H \boldsymbol R \in \mathbb C^{2 N_V N_H \times 2 N_V N_H} RC2NVNH×2NVNH,具有特定的块结构,可写为
R = [ B 1 B 2 H B 2 B 3 ] ∈ C 2 N V N H × 2 N V N H \boldsymbol R = \left[ \begin{matrix} \boldsymbol{B}_1& \boldsymbol{B}_{2}^{H}\\ \boldsymbol{B}_2& \boldsymbol{B}_3\\ \end{matrix} \right] \in \mathbb C^{2 N_V N_H \times 2 N_V N_H} R=[B1B2B2HB3]C2NVNH×2NVNH

其中 B 1 , B 2 , B 3 ∈ C N V N H × N V N H \boldsymbol{B}_1,\boldsymbol{B}_2,\boldsymbol{B}_3 \in \mathbb C^{ N_V N_H \times N_V N_H} B1,B2,B3CNVNH×NVNH具有相同的结构性质,且不难看出,该性质取决于 e j Ψ ( θ ) ( e j Ψ ( θ ) ) H ∈ C N V N H × N V N H e^{j \boldsymbol \Psi(\boldsymbol \theta)} \left( e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right )^H \in \mathbb C^{ N_V N_H \times N_V N_H} ejΨ(θ)(ejΨ(θ))HCNVNH×NVNH。回顾 e j Ψ ( θ ) e^{j \boldsymbol \Psi(\boldsymbol \theta)} ejΨ(θ)的表达式:
e j Ψ ( θ ) = [ e j Ψ 1 ( θ ) , e j Ψ 2 ( θ ) , ⋯   , e j Ψ N V N H ( θ ) ] T Ψ ( u − 1 ) N H + v ( θ ) = 2 π λ [ ( u − 1 ) d V cos ⁡ θ 1 + ( v − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] \begin{aligned} e^{j \boldsymbol \Psi(\boldsymbol \theta)} &= \left [ e^{j \Psi_1(\boldsymbol \theta)}, e^{j \Psi_2(\boldsymbol \theta)}, \cdots, e^{j \Psi_{N_V N_H}(\boldsymbol \theta)} \right]^T \\ \Psi_{(u-1)N_H+v}(\boldsymbol \theta) &= \frac{2 \pi}{\lambda} \left [ (u-1) d_V \cos \theta_1 + (v-1)d_H \sin \theta_1 \sin \theta_2 \right] \end{aligned} ejΨ(θ)Ψ(u1)NH+v(θ)=[ejΨ1(θ),ejΨ2(θ),,ejΨNVNH(θ)]T=λ2π[(u1)dVcosθ1+(v1)dHsinθ1sinθ2]

我们不妨先固定 u 0 ∈ { 1 , ⋯   , N V } u_0 \in \{1,\cdots,N_V\} u0{1,,NV},取子向量 ( e j Ψ k ( θ ) : k = ( u 0 − 1 ) N H + v , v = 1 , ⋯   , N H ) ∈ C N H × 1 \left (e^{j \Psi_k(\boldsymbol \theta)}: k=(u_0-1)N_H+v, v=1,\cdots,N_H \right) \in \mathbb C^{N_H \times 1} (ejΨk(θ):k=(u01)NH+v,v=1,,NH)CNH×1,令
∣ u 0 ⟩ = ( e j Ψ k ( θ ) : k = ( u 0 − 1 ) N H + v , v = 1 , ⋯   , N H ) ∈ C N H × 1 |u_0 \rangle = \left (e^{j \Psi_k(\boldsymbol \theta)}: k=(u_0-1)N_H+v, v=1,\cdots,N_H \right) \in \mathbb C^{N_H \times 1} u0=(ejΨk(θ):k=(u01)NH+v,v=1,,NH)CNH×1

(这里存在一定程度的符号滥用,但为了方便叙述,我们选择采用量子力学中常用的狄拉克符号),则 e j Ψ ( θ ) ( e j Ψ ( θ ) ) H ∈ C N V N H × N V N H e^{j \boldsymbol \Psi(\boldsymbol \theta)} \left( e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right )^H \in \mathbb C^{ N_V N_H \times N_V N_H} ejΨ(θ)(ejΨ(θ))HCNVNH×NVNH可以写为
e j Ψ ( θ ) ( e j Ψ ( θ ) ) H = [ ∣ 1 ⟩ ⟨ 1 ∣ ∣ 1 ⟩ ⟨ 2 ∣ ∣ 1 ⟩ ⟨ 3 ∣ ⋯ ∣ 1 ⟩ ⟨ N V ∣ ∣ 2 ⟩ ⟨ 1 ∣ ∣ 2 ⟩ ⟨ 2 ∣ ∣ 2 ⟩ ⟨ 3 ∣ ⋯ ⋮ ∣ 3 ⟩ ⟨ 1 ∣ ∣ 3 ⟩ ⟨ 2 ∣ ∣ 3 ⟩ ⟨ 3 ∣ ⋯ ∣ N V − 1 ⟩ ⟨ N V ∣ ⋮ ⋮ ⋮ ⋱ ∣ N V − 1 ⟩ ⟨ N V ∣ ∣ N V ⟩ ⟨ 1 ∣ ⋯ ∣ N V ⟩ ⟨ N V − 2 ∣ ∣ N V ⟩ ⟨ N V − 1 ∣ ∣ N V ⟩ ⟨ N V ∣ ] e^{j \boldsymbol \Psi(\boldsymbol \theta)} \left( e^{j \boldsymbol \Psi(\boldsymbol \theta)} \right )^H=\left[ \begin{matrix}{} |1\rangle \langle 1|& |1\rangle \langle 2|& |1\rangle \langle 3|& \cdots& |1\rangle \langle N_V|\\ |2\rangle \langle 1|& |2\rangle \langle 2|& |2\rangle \langle 3|& \cdots& \vdots\\ |3\rangle \langle 1|& |3\rangle \langle 2|& |3\rangle \langle 3|& \cdots& |N_V-1\rangle \langle N_V|\\ \vdots& \vdots& \vdots& \ddots& |N_V-1\rangle \langle N_V|\\ |N_V\rangle \langle 1|& \cdots& |N_V\rangle \langle N_V-2|& |N_V\rangle \langle N_V-1|& |N_V\rangle \langle N_V|\\ \end{matrix} \right] ejΨ(θ)(ejΨ(θ))H= ∣11∣∣21∣∣31∣NV1∣∣12∣∣22∣∣32∣∣13∣∣23∣∣33∣NVNV2∣NVNV1∣∣1NVNV1NVNV1NVNVNV

首先,我们不难发现
∣ i ⟩ ⟨ j ∣ = ∣ i + d ⟩ ⟨ j + d ∣ ,    ∀ d |i \rangle \langle j| = |i+d \rangle \langle j+d|, \ \ \forall d ij=i+dj+d,  d

因此,我们只需要关注 ∣ 1 ⟩ ⟨ 1 ∣ , ∣ 2 ⟩ ⟨ 1 ∣ , ⋯   , ∣ N V ⟩ ⟨ 1 ∣ |1\rangle \langle 1|, |2\rangle \langle 1|, \cdots, |N_V\rangle \langle 1| ∣11∣,∣21∣,,NV1∣即可

u 0 = 1 u_0=1 u0=1
∣ 1 ⟩ ⟨ 1 ∣ = [ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] [ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] H |1\rangle \langle 1| = \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right] \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right]^H ∣11∣= 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 H

不难发现,上述写法直接对应到ULA阵,因此对应部分的块矩阵满足Toplitz性

u 0 > 1 u_0 > 1 u0>1
∣ u 0 ⟩ ⟨ 1 ∣ = ( e j 2 π λ ( u 0 − 1 ) d V cos ⁡ θ 1 [ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] ) [ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] H = e j 2 π λ ( u 0 − 1 ) d V cos ⁡ θ 1 [ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] [ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] H \begin{aligned} |u_0 \rangle \langle 1| &=\left ( e^{j \frac{2\pi}{\lambda}(u_0-1)d_V \cos \theta_1} \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right] \right ) \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right]^H \\ &= e^{j \frac{2\pi}{\lambda}(u_0-1)d_V \cos \theta_1 } \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right] \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right]^H \end{aligned} u01∣= ejλ2π(u01)dVcosθ1 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 H=ejλ2π(u01)dVcosθ1 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 H

注意到,无论是 ∣ 1 ⟩ ⟨ 1 ∣ |1\rangle \langle 1| ∣11∣还是 ∣ u 0 ⟩ ⟨ 1 ∣ , u 0 > 1 |u_0 \rangle \langle 1|,u_0 > 1 u01∣,u0>1,大家都有一个公共的Toeplitz结构,即
[ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] [ 1 e j 2 π λ d H sin ⁡ θ 1 sin ⁡ θ 2 e j 2 π λ 2 d H sin ⁡ θ 1 sin ⁡ θ 2 ⋮ e j 2 π λ ( N H − 1 ) d H sin ⁡ θ 1 sin ⁡ θ 2 ] H = [ α 1 α 2 ∗ ⋯ α N H ∗ α 2 α 1 ⋱ ⋮ ⋮ ⋱ ⋱ α 2 ∗ α N H ⋯ α 2 α 1 ] ∈ C N H × N H \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right] \left[ \begin{array}{l} 1\\ e^{j\frac{2\pi}{\lambda}d_H \sin \theta_1 \sin \theta_2}\\ e^{j\frac{2\pi}{\lambda}2d_H \sin \theta_1 \sin \theta_2} \\ \vdots \\ e^{j\frac{2\pi}{\lambda}(N_H-1)d_H \sin \theta_1 \sin \theta_2}\\ \end{array} \right]^H = \left[ \begin{matrix} \alpha _1& \alpha _{2}^{*}& \cdots& \alpha _{N_H}^{*}\\ \alpha _2& \alpha _1& \ddots& \vdots\\ \vdots& \ddots& \ddots& \alpha _{2}^{*}\\ \alpha _{N_H}& \cdots& \alpha _2& \alpha _1\\ \end{matrix} \right] \in \mathbb C^{N_H \times N_H} 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 1ejλ2πdHsinθ1sinθ2ejλ2π2dHsinθ1sinθ2ejλ2π(NH1)dHsinθ1sinθ2 H= α1α2αNHα2α1α2αNHα2α1 CNH×NH

因为积分无非就是加权求和,并不改变上述积分内部矩阵的结构,因此我们得出如下结论:
考虑协方差矩阵
R = [ B 1 B 2 H B 2 B 3 ] ∈ C 2 N V N H × 2 N V N H \boldsymbol R = \left[ \begin{matrix} \boldsymbol{B}_1& \boldsymbol{B}_{2}^{H}\\ \boldsymbol{B}_2& \boldsymbol{B}_3\\ \end{matrix} \right] \in \mathbb C^{2 N_V N_H \times 2 N_V N_H} R=[B1B2B2HB3]C2NVNH×2NVNH

的每一个块矩阵 B 1 , B 2 , B 3 ∈ C N V N H × N V N H \boldsymbol{B}_1,\boldsymbol{B}_2,\boldsymbol{B}_3 \in \mathbb C^{ N_V N_H \times N_V N_H} B1,B2,B3CNVNH×NVNH具有相同的结构,即
B l = [ B l , 1 B l , 2 H B l , 3 H ⋯ B l , N V H B l , 2 B l , 1 B l , 2 H ⋱ ⋮ B l , 3 B l , 2 B l , 1 ⋱ B l , 3 H ⋮ ⋱ ⋱ ⋱ B l , 2 H B l , N V ⋯ B l , 3 B l , 2 B l , 1 ] ∈ C N V N H × N V N H \boldsymbol{B}_l=\left[ \begin{matrix}{} \boldsymbol{B}_{l,1}& \boldsymbol{B}_{l,2}^{H}& \boldsymbol{B}_{l,3}^{H}& \cdots& \boldsymbol{B}_{l,N_V}^{H}\\ \boldsymbol{B}_{l,2}& \boldsymbol{B}_{l,1}& \boldsymbol{B}_{l,2}^{H}& \ddots& \vdots\\ \boldsymbol{B}_{l,3}& \boldsymbol{B}_{l,2}& \boldsymbol{B}_{l,1}& \ddots& \boldsymbol{B}_{l,3}^{H}\\ \vdots& \ddots& \ddots& \ddots& \boldsymbol{B}_{l,2}^{H}\\ \boldsymbol{B}_{l,N_V}& \cdots& \boldsymbol{B}_{l,3}& \boldsymbol{B}_{l,2}& \boldsymbol{B}_{l,1}\\ \end{matrix} \right] \in \mathbb{C}^{ N_V N_H \times N_V N_H } Bl= Bl,1Bl,2Bl,3Bl,NVBl,2HBl,1Bl,2Bl,3HBl,2HBl,1Bl,3Bl,2Bl,NVHBl,3HBl,2HBl,1 CNVNH×NVNH

其中

B l , 1 = β ⋅ [ α 1 α 2 ∗ ⋯ α N H ∗ α 2 α 1 ⋱ ⋮ ⋮ ⋱ ⋱ α 2 ∗ α N H ⋯ α 2 α 1 ] ∈ C N H × N H , β ∈ R \boldsymbol{B}_{l,1} = \beta \cdot \left[ \begin{matrix} \alpha _1& \alpha _{2}^{*}& \cdots& \alpha _{N_H}^{*}\\ \alpha _2& \alpha _1& \ddots& \vdots\\ \vdots& \ddots& \ddots& \alpha _{2}^{*}\\ \alpha _{N_H}& \cdots& \alpha _2& \alpha _1\\ \end{matrix} \right] \in \mathbb C^{N_H \times N_H}, \beta \in \mathbb R Bl,1=β α1α2αNHα2α1α2αNHα2α1 CNH×NH,βR

B l , u 0 = β ⋅ e j 2 π λ ( u 0 − 1 ) d V cos ⁡ θ 1 ⋅ [ α 1 α 2 ∗ ⋯ α N H ∗ α 2 α 1 ⋱ ⋮ ⋮ ⋱ ⋱ α 2 ∗ α N H ⋯ α 2 α 1 ] ∈ C N H × N H , β ∈ R , u 0 > 1 \boldsymbol{B}_{l,u_0} = \beta \cdot e^{j \frac{2\pi}{\lambda}(u_0-1)d_V \cos \theta_1} \cdot \left[ \begin{matrix} \alpha _1& \alpha _{2}^{*}& \cdots& \alpha _{N_H}^{*}\\ \alpha _2& \alpha _1& \ddots& \vdots\\ \vdots& \ddots& \ddots& \alpha _{2}^{*}\\ \alpha _{N_H}& \cdots& \alpha _2& \alpha _1\\ \end{matrix} \right] \in \mathbb C^{N_H \times N_H}, \beta \in \mathbb R, u_0 > 1 Bl,u0=βejλ2π(u01)dVcosθ1 α1α2αNHα2α1α2αNHα2α1 CNH×NH,βR,u0>1

  • B l , 1 \boldsymbol{B}_{l,1} Bl,1的自由度为 N H N_H NH
  • B l , u 0 , u 0 > 1 \boldsymbol{B}_{l,u_0}, u_0 > 1 Bl,u0,u0>1的自由度为 N H + N H − 1 N_H+N_H-1 NH+NH1

参考文献

[1] L. Miretti, R. L. G. Cavalcante and S. Stańczak, “Channel Covariance Conversion and Modelling Using Infinite Dimensional Hilbert Spaces,” in IEEE Transactions on Signal Processing, vol. 69, pp. 3145-3159, 2021, doi: 10.1109/TSP.2021.3082461.文章来源地址https://www.toymoban.com/news/detail-685486.html

到了这里,关于UPA/URA双极化天线的协方差矩阵结构的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【概率论理论】协方差,协方差矩阵理论(机器学习)

      在许多算法中需要求出两个分量间相互关系的信息。协方差就是描述这种相互关联程度的一个特征数。   设 ( X , Y ) (X,Y) ( X , Y ) 是一个二维随机变量,若 E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] E[(X-E(X))(Y-E(Y))] E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] 存在,则称此数学期望为 X X X 与

    2024年02月14日
    浏览(49)
  • 协方差矩阵在torch和numpy中的比较,自行实现torch协方差矩阵

    数学中(教科书、大学课堂、数学相关的科普视频),一个矩阵的向量往往是竖着的, 一列作为一个vector ,这一点numpy库也是这样默认的。 但是在机器学习以torch框架为例,一个有意义的向量或者说embedding 是横着的 。 因为numpy库默认是一列是一个向量而torch等机器学习框架

    2023年04月08日
    浏览(38)
  • 协方差矩阵

    首先先了解方差与协方差: 协方差: (1)针对 一维样本集合 时(y i =x i ),求出的协方差其实就是方差,既方差是协方差的一种特殊情况。协方差意义和方差一样,都是 反应集合中各元素离散程度 。 (2)针对 二维样本集合 时,求出的协方差反映的就是 两个维度之间的相

    2024年02月10日
    浏览(65)
  • 因子模型:协方差矩阵

    本文是Quantitative Methods and Analysis: Pairs Trading此书的读书笔记。 因子协方差矩阵 (factor covariance matrix)在计算风险的时候很重要。如果一个模型有个因子,那么协方差矩阵的大小就是。对角线元素是每个因子的方差,非对角线元素是协方差,这些协方差有可能不为零。 协方差

    2024年02月04日
    浏览(85)
  • 协方差矩阵的研究

    (1)协方差矩阵的定义、计算过程。         协方差(Covariance):在概率论和统计学中用于衡量两个变量的总体误差。协方差在某种意义上给出了两个变量线性相关性的强度以及这些变量的尺度。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差矩阵

    2024年02月13日
    浏览(37)
  • 协方差矩阵到底有什么用?

    我们知道,线性代数,可以完成空间上的线性变换——旋转,缩放。对于协方差,我们隐约可以想到,它能解释一个随机变量,它在各个维度的变化程度。但是,这种认识其实还是处于比较浅层次的。数学嘛,总要落实到公式上,才算认识比较深刻。 我认为,协方差一个经典

    2024年02月16日
    浏览(45)
  • Gram矩阵+Gram矩阵和协方差矩阵的关系

    gram矩阵是计算每个通道 i 的feature map与每个通道 j 的feature map 的内积 gram matrix的每个值可以说是代表 i 通道的feature map和 j 通道的 feature map的互相关程度。 参考博客 G = A T A = [ a 1 T a 2 T ⋮ a n T ] [ a 1 a 2 ⋯ a n ] = [ a 1 T a 1 a 1 T a 2 ⋯ a 1 T a n a 2 T a 1 a 2 T a 2 ⋯ a 2 T a n a n T a 1 a n

    2024年02月10日
    浏览(42)
  • 基于 Matlab 的方差-协方差矩阵可视化表示(椭圆、椭球)

    因为在学习模糊度固定的时候涉及了『搜索椭球』这一概念,很想知道是如何用椭球来表示搜索空间的。出于好奇,在查阅了一些相关文献,终于解决了笔者的疑惑,此篇博文就简要记录一下如何根据协方差矩阵来绘制椭球。 下面是得到的一些结论: 对协方差矩阵进行奇异

    2024年02月06日
    浏览(71)
  • 阿白数模笔记之协方差矩阵与相关矩阵

    目录 前言 一、方差 二、协方差矩阵 ①协方差 ②自协方差矩阵 互协方差矩阵​编辑 ③互协方差矩阵 Ⅰ、数学定义 Ⅱ、MATLAB运算 三、相关矩阵 ①person相关系数 ②自相关矩阵 ③互相关矩阵 Ⅰ、数学定义 Ⅱ、matlab运算         作为数模小白,前天在学习FA算法时看到协方差

    2024年02月11日
    浏览(44)
  • matlab 计算点云协方差矩阵

    本文由CSDN点云侠原创,原文链接。如

    2024年02月10日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包