5. 线性层及其他层

这篇具有很好参考价值的文章主要介绍了5. 线性层及其他层。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

5.1 神经网络结构

5. 线性层及其他层,动手学卷积神经网络,深度学习,pytorch,python

 5.2 线性拉平

import torch
import torchvision
from torch import nn 
from torch.nn import ReLU
from torch.nn import Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       
dataloader = DataLoader(dataset, batch_size=64)

for data in dataloader:
    imgs, targets = data
    print(imgs.shape)
    output = torch.reshape(imgs,(1,1,1,-1))
    print(output.shape)

结果:

5. 线性层及其他层,动手学卷积神经网络,深度学习,pytorch,python

 5.3 线性层

import torch
import torchvision
from torch import nn 
from torch.nn import Linear
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)       
dataloader = DataLoader(dataset, batch_size=64,drop_last=True)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.linear1 = Linear(196608,10)
        
    def forward(self, input):
        output = self.linear1(input)
        return output

tudui = Tudui()
writer = SummaryWriter("logs")
step = 0

for data in dataloader:
    imgs, targets = data
    print(imgs.shape)
    writer.add_images("input", imgs, step)
    output = torch.reshape(imgs,(1,1,1,-1)) # 方法一:拉平
    #output = torch.flatten(imgs)  # 方法二:拉平。展开为一维
    print(output.shape)
    output = tudui(output)
    print(output.shape)
    writer.add_images("output", output, step)
    step = step + 1

操作:

① 在 Anaconda 终端里面,激活py3.6.3环境,再输入 tensorboard --logdir=C:\Users\wangy\Desktop\03CV\logs 命令,将网址赋值浏览器的网址栏,回车,即可查看tensorboard显示日志情况。

5. 线性层及其他层,动手学卷积神经网络,深度学习,pytorch,python

 结果:

5. 线性层及其他层,动手学卷积神经网络,深度学习,pytorch,python

 文章来源地址https://www.toymoban.com/news/detail-685515.html

到了这里,关于5. 线性层及其他层的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 《动手学深度学习》——线性神经网络

    参考资料: 《动手学深度学习》 样本: n n n 表示样本数, x ( i ) = [ x 1 ( i ) , x 2 ( i ) , ⋯   , x d ( i ) ] x^{(i)}=[x^{(i)}_1,x^{(i)}_2,cdots,x^{(i)}_d] x ( i ) = [ x 1 ( i ) ​ , x 2 ( i ) ​ , ⋯ , x d ( i ) ​ ] 表示第 i i i 个样本。 预测: y ^ = w T x + b hat{y}=w^Tx+b y ^ ​ = w T x + b 表示单个样本的预

    2024年02月12日
    浏览(54)
  • 动手学深度学习(二)线性神经网络

    推荐课程:跟李沐学AI的个人空间-跟李沐学AI个人主页-哔哩哔哩视频 目录 一、线性回归 1.1 线性模型 1.2 损失函数(衡量预估质量) 二、基础优化算法(梯度下降算法) 2.1 梯度下降公式 2.2 选择学习率 2.3 小批量随机梯度下降 三、线性回归的从零开始实现(代码实现) 3.1

    2024年02月14日
    浏览(47)
  • 十 动手学深度学习v2 ——卷积神经网络之NiN + GoogLeNet

    NiN块使用卷积层加两个1x1卷积层 后者对每个像素增加了非线性性 NiN使用全局平均池化层来替代VGG和AlexNet中的全连接层 不容易过拟合,更少的参数个数 Inception块由四条并行路径组成。 前三条路径使用窗口大小为1x1、3x3和5x5的卷积层,从不同空间大小中提取信息。 中间的两条

    2024年02月09日
    浏览(60)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十八):卷积神经网络模型

    发布时间:1989年 模型目的:识别手写数字 1.3.1 相关函数原型 1)nn.Conv2d:卷积层

    2024年02月13日
    浏览(73)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十七):卷积神经网络入门

    我们在前面学习的多层感知机中,已经认识了全链接层,缺点很明显,在稍微大点的网络模型中,参数成指数级别增长。参数量很快就达到数十亿,这样的量级几乎无法计算。为此科学家们想出一个减少参数的方法:卷积。 从全链接层到卷积的推论,使用如下两个原则: 平

    2024年02月13日
    浏览(59)
  • 动手学深度学习-pytorch版本(二):线性神经网络

    参考引用 动手学深度学习 神经网络的整个训练过程,包括: 定义简单的神经网络架构、数据处理、指定损失函数和如何训练模型 。经典统计学习技术中的 线性回归 和 softmax 回归 可以视为线性神经网络 1.1 线性回归 回归 (regression) 是能为一个或多个自变量与因变量之间关系建

    2024年02月12日
    浏览(47)
  • 1、动手学深度学习——线性神经网络:线性回归的实现(从零实现+内置函数实现)

    回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。 在自然科学和社会科学领域, 回归经常用来表示输入和输出之间的关系 。 给定一个数据集,我们的目标是 寻找模型的权重和偏置 , 使得根据模型做出的预测大体符合数据里的真实价格。 输出的

    2024年02月11日
    浏览(49)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十九):卷积神经网络模型(GoogLeNet、ResNet、DenseNet)

    发布时间:2014年 GoogLeNet的贡献是如何选择合适大小的卷积核,并将不同大小的卷积核组合使用。 之前介绍的网络结构都是串行的,GoogLeNet使用并行的网络块,称为“Inception块” “Inception块”前后进化了四次,论文链接: [1]https://arxiv.org/pdf/1409.4842.pdf [2]https://arxiv.org/pdf/150

    2024年02月12日
    浏览(61)
  • 卷积神经网络(CNN)详细介绍及其原理详解

      本文总结了关于卷积神经网络(CNN)的一些基础的概念,并且对于其中的细节进行了详细的原理讲解,通过此文可以十分全面的了解卷积神经网络(CNN),非常适合于作为Deep Learning的入门学习。下面就是本篇博客的全部内容!   卷积神经网络(Convolutional Neural Networks, C

    2024年02月08日
    浏览(39)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十八):卷积神经网络模型(LeNet、AlexNet、VGG、NiN)

    发布时间:1989年 模型目的:识别手写数字 1.3.1 相关函数原型 1)nn.Conv2d:卷积层

    2024年02月12日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包