【Math】导数、梯度、雅可比矩阵、黑塞矩阵

这篇具有很好参考价值的文章主要介绍了【Math】导数、梯度、雅可比矩阵、黑塞矩阵。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

导数、梯度、雅可比矩阵、黑塞矩阵都是与求导相关的一些概念,比较容易混淆,本文主要是对它们的使用场景和定义进行区分。

首先需要先明确一些函数的叫法(是否多元,以粗体和非粗体进行区分):

  • 一元函数 f ( x ) : R ⟶ R f(x):\mathbb{R} \longrightarrow \mathbb{R} f(x):RR
  • 多元函数 f ( x ) : R n ⟶ R f(\mathbf{x}):\mathbb{R}^{n} \longrightarrow \mathbb{R} f(x):RnR
  • 向量函数 f ( x ) : R n ⟶ R m \mathbf{f(x)}:\mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} f(x):RnRm

例如:

  • 函数 y = x y=x y=x为一元函数
  • 函数 y = x 1 + 2 x 2 y=x_1+2x_2 y=x1+2x2为多元函数
  • 函数 { y 1 = x 1 + 2 x 2 y 2 = 2 x 1 + x 2 \begin{cases} y_1 =x_1+2x_2 \\ y_2=2x_1+x_2 \end{cases} {y1=x1+2x2y2=2x1+x2为向量函数

概念详解

导数

针对一元函数: f ( x ) : R ⟶ R f(x):\mathbb{R} \longrightarrow \mathbb{R} f(x):RR,近似:

f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)\approx f(x_{0})+f^{\prime}(x_{0})(x-x_{0}) f(x)f(x0)+f(x0)(xx0)

梯度

针对多元函数: f ( x ) : R n ⟶ R f(\mathbf{x}):\mathbb{R}^{n} \longrightarrow \mathbb{R} f(x):RnR,是导数的推广, 它的结果是一个向量:

▽ f = [ ∂ f ∂ x 1 ∂ f ∂ x 2 . . . ∂ f ∂ x n ] \bigtriangledown f=\begin{bmatrix} \frac{\partial f}{\partial x_{1}} \\ \frac{\partial f}{\partial x_{2}} \\ ... \\ \frac{\partial f}{\partial x_{n}} \end{bmatrix} f= x1fx2f...xnf

近似:

f ( x ) ≈ f ( x 0 ) + ▽ f ( x 0 ) ( x − x 0 ) f(\mathbf{x} )\approx f(\mathbf{x}_{0})+\bigtriangledown f(\mathbf{x}_{0})(\mathbf{x}-\mathbf{x}_{0}) f(x)f(x0)+f(x0)(xx0)

雅可比矩阵

针对向量函数: f ( x ) : R n ⟶ R m \mathbf{f(x)}:\mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} f(x):RnRm

如果函数 f ( x ) : R n ⟶ R m \mathbf{f(x)}:\mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} f(x):RnRm在点 x \mathbf{x} x处可微的话,在点 x \mathbf{x} x的雅可比矩阵即为该函数在该点的最佳线性逼近,也代表雅可比矩阵是一元函数的导数在向量函数的推广。在这种情况下,雅可比矩阵也被称作函数 f \mathbf{f} f在点 x \mathbf{x} x的微分或者导数,其中行数为 f \mathbf{f} f的维数;列数为 x \mathbf{x} x的维度

J = [ ∂ f ∂ x 1 . . . ∂ f ∂ x n ] = [ ∂ f 1 ∂ x 1 . . . ∂ f 1 ∂ x n ⋮ ⋱ ⋮ ∂ f m ∂ x 1 . . . ∂ f m ∂ x n ] \mathbf{J}=\begin{bmatrix} \frac{\partial \mathbf{f}}{\partial x_{1}} & ... & \frac{\partial \mathbf{f}}{\partial x_{n}} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & ... & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & ... & \frac{\partial f_{m}}{\partial x_{n}} \end{bmatrix} J=[x1f...xnf]= x1f1x1fm......xnf1xnfm

矩阵分量:

J i j = ∂ f i ∂ x j \mathbf{J}_{ij}=\frac{\partial f_{i}}{\partial x_{j}} Jij=xjfi

近似:

f ( x ) ≈ f ( x 0 ) + J ( x 0 ) ( x − x 0 ) \mathbf{f}(\mathbf{x} )\approx \mathbf{f}(\mathbf{x}_{0})+ \mathbf{J}(\mathbf{x}_{0})(\mathbf{x}-\mathbf{x}_{0}) f(x)f(x0)+J(x0)(xx0)

黑塞矩阵

针对多元函数: f : R n ⟶ R f:\mathbb{R}^{n} \longrightarrow \mathbb{R} f:RnR,有点二阶导数的意思。

H = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 . . . ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 . . . ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 . . . ∂ 2 f ∂ x n 2 ] \mathbf{H}=\begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1}\partial x_{2}} & ... & \frac{\partial^{2} f}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & ... & \frac{\partial^{2} f}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n}\partial x_{2}} & ... & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix} H= x122fx2x12fxnx12fx1x22fx222fxnx22f.........x1xn2fx2xn2fxn22f

矩阵分量:

H i j = ∂ 2 f ∂ x i ∂ x j \mathbf{H}_{ij}=\frac{\partial^{2} f}{\partial x_{i}\partial x_{j}} Hij=xixj2f

近似:

f ( x ) ≈ f ( x 0 ) + ▽ f ( x 0 ) ( x − x 0 ) + 1 2 ( x − x 0 ) T H ( x 0 ) ( x − x 0 ) f(\mathbf{x} )\approx f(\mathbf{x}_{0})+\bigtriangledown f(\mathbf{x}_{0})(\mathbf{x}-\mathbf{x}_{0}) + \frac{1}{2}(\mathbf{x}-\mathbf{x}_{0})^{T}\mathbf{H}(\mathbf{x}_{0})(\mathbf{x}-\mathbf{x}_{0}) f(x)f(x0)+f(x0)(xx0)+21(xx0)TH(x0)(xx0)


实例

对于最简单的一元函数 y = 2 x y=2x y=2x,则该一元函数的导数为: y ′ = 2 y^{\prime}=2 y=2。这是最基础的了。

对于一个多元函数 y = x 1 4 x 2 + 3 x 2 + x 2 e x 3 y=x_1^4x_2+3x_2+x_2e^{x_3} y=x14x2+3x2+x2ex3,则:

该多元函数的梯度为:

▽ = [ ∂ y ∂ x 1 ∂ y ∂ x 2 ∂ y ∂ x 3 ] = [ 4 x 1 3 x 2 x 1 4 + 3 + e x 3 x 2 e x 3 ] \bigtriangledown =\begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \frac{\partial y}{\partial x_3} \end{bmatrix}=\begin{bmatrix} 4x_1^3x_2 \\ x_1^4+3+e^{x_3} \\ x_2e^{x_3}\end{bmatrix} = x1yx2yx3y = 4x13x2x14+3+ex3x2ex3

该多元函数的黑塞矩阵为:

H = [ ∂ 2 y ∂ x 1 2 ∂ 2 y ∂ x 1 ∂ x 2 ∂ 2 y ∂ x 1 ∂ x 3 ∂ 2 y ∂ x 2 ∂ x 1 ∂ 2 y ∂ x 2 2 ∂ 2 y ∂ x 2 ∂ x 3 ∂ 2 y ∂ x 3 ∂ x 1 ∂ 2 y ∂ x 3 ∂ x 2 ∂ 2 y ∂ x 3 2 ] = [ 12 x 1 2 x 2 4 x 1 3 0 4 x 1 3 0 e x 3 0 e x 3 x 2 e x 3 ] \mathbf{H}=\begin{bmatrix} \frac{\partial^{2} y}{\partial x_{1}^{2}} & \frac{\partial^{2} y}{\partial x_{1}\partial x_{2}} & \frac{\partial^{2} y}{\partial x_{1}\partial x_{3}} \\ \frac{\partial^{2} y}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2} y}{\partial x_{2}^{2}} & \frac{\partial^{2} y}{\partial x_{2}\partial x_{3}} \\ \frac{\partial^{2} y}{\partial x_{3}\partial x_{1}} & \frac{\partial^{2} y}{\partial x_{3}\partial x_{2}} & \frac{\partial^{2} y}{\partial x_{3}^{2}} \end{bmatrix} = \begin{bmatrix} 12x_1^2x_2 & 4x_1^3 & 0\\ 4x_1^3 & 0 & e^{x_3}\\ 0 & e^{x_3} & x_2e^{x_3} \end{bmatrix} H= x122yx2x12yx3x12yx1x22yx222yx3x22yx1x32yx2x32yx322y = 12x12x24x1304x130ex30ex3x2ex3

视该多元函数的梯度为一个向量函数,即:

{ y 1 = 4 x 1 3 x 2 y 2 = x 1 4 + 3 + e x 3 y 3 = x 2 e x 3 \begin{cases} y_1 =4x_1^3x_2 \\ y_2=x_1^4+3+e^{x_3} \\ y_3=x_2e^{x_3} \end{cases} y1=4x13x2y2=x14+3+ex3y3=x2ex3

那么,该多元函数的雅可比矩阵为:

J = [ ∂ y 1 ∂ x 1 ∂ y 1 ∂ x 2 ∂ y 1 ∂ x 3 ∂ y 2 ∂ x 1 ∂ y 2 ∂ x 2 ∂ y 2 ∂ x 3 ∂ y 3 ∂ x 1 ∂ y 3 ∂ x 2 ∂ y 3 ∂ x 3 ] = [ 12 x 1 2 x 2 4 x 1 3 0 4 x 1 3 0 e x 3 0 e x 3 x 2 e x 3 ] \mathbf{J}= \begin{bmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{1}}{\partial x_{3}} \\ \frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{3}} \\ \frac{\partial y_{3}}{\partial x_{1}} & \frac{\partial y_{3}}{\partial x_{2}} & \frac{\partial y_{3}}{\partial x_{3}} \end{bmatrix} = \begin{bmatrix} 12x_1^2x_2 & 4x_1^3 & 0\\ 4x_1^3 & 0 & e^{x_3}\\ 0 & e^{x_3} & x_2e^{x_3} \end{bmatrix} J= x1y1x1y2x1y3x2y1x2y2x2y3x3y1x3y2x3y3 = 12x12x24x1304x130ex30ex3x2ex3

可以看出,黑塞矩阵是多元函数 f ( x ) f(\mathbf{x}) f(x)的梯度对自变量 x \mathbf{x} x的雅可比矩阵。文章来源地址https://www.toymoban.com/news/detail-685791.html


总结

  • 梯度是雅可比矩阵的一个特例:当向量函数为标量函数时( f \mathbf{f} f向量维度为1),雅可比矩阵是梯度向量
  • 黑塞矩阵是多元函数 f ( x ) f(\mathbf{x}) f(x)的梯度对自变量 x \mathbf{x} x的雅可比矩阵

相关阅读

  • 多元函数的泰勒(Taylor)展开式
  • 梯度vs Jacobian矩阵vs Hessian矩阵
  • 导数、梯度、 Jacobian、Hessian

到了这里,关于【Math】导数、梯度、雅可比矩阵、黑塞矩阵的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深入理解Python中的math和decimal模块:数学基础与高精度计算实战【第104篇—math和decimal模块】

    前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 在Python中, math 和 decimal 模块是处理数学运算的重要工具。 math 提供了一系列常见的数学函数,而 decimal 则专注于高精度的浮点数运算。本文

    2024年03月19日
    浏览(50)
  • 机器人控制算法十之运动学与动力学:DH建模与雅可比矩阵详解

    简介: 正运动学建模 逆运动学求解 动力学-雅可比矩阵 … 1.1 标准DH建模方法 关于标准DH建模的详细说明,可参考:一文带你完全掌握机器人DH参数建模(详细步骤+实例+代码) 例:Puma560: 6自由度关节机器人,6个关节都是旋转副;前3个关节用于确定手腕参考点的位置,后3个关

    2024年02月14日
    浏览(41)
  • 【深度学习】3-3 神经网络的学习- 导数&梯度

    导数就是表示某个瞬间的变化量 ,式子如下: 式子的左边,表示f(x)关于x的导数,即f(x)相对于x的变化程度。式子表示的导数的含义是, x的“微小变化”将导致函数f(x)的值在多大程度上发生变化 。 其中,表示微小变化h无限趋近0 。 下面使用程序来实现上面的例子 这个函数

    2024年02月09日
    浏览(28)
  • 一阶方向导数与梯度和方向向量的关系及其应用

       一、基本概念    1、方向导数(Directional derivative)    方向导数是指在给定点沿着某个方向的导数,表示函数在该方向上的变化率。 具体而言,对于一个向量场 f ( x , y , z ) f(x,y,z) f ( x , y , z ) 和一个单位向量 u = ( u 1 , u 2 , u 3 ) mathbf{u}=(u_1,u_2,u_3) u = ( u 1 ​ , u 2 ​

    2023年04月08日
    浏览(39)
  • 人工智能之数学基础【共轭梯度法】

    简述 共轭梯度法是利用目标函数的梯度逐步产生 共轭方向 并将其作为搜索方向的方法。 共轭梯度法是针对二次函数 f ( x ) = 1 2 x T Q x + b T x + c , x ∈ R n f(x)=frac{1}{2}x^TQx+b^Tx+c,x in R^n f ( x ) = 2 1 ​ x T Q x + b T x + c , x ∈ R n 的 无约束优化问题 。此方法具有 存储变量少 和 收敛速

    2024年02月20日
    浏览(48)
  • 机器学习的数学基础:从线性代数到梯度下降

    机器学习是人工智能的一个重要分支,它涉及到计算机程序自动化地学习或者预测事物的行为。机器学习的核心是算法,算法需要数学来支持。在本文中,我们将从线性代数到梯度下降的数学基础来讨论机器学习算法的核心。 机器学习的数学基础包括线性代数、微积分、概率

    2024年02月21日
    浏览(45)
  • 鞍点的判断(黑森矩阵/黑塞矩阵)

    判断鞍点的一个充分条件是: 函数在一阶导数为零处(驻点)的黑塞矩阵为不定矩阵。   半正定矩阵: 所有特征值为非负。 半负定矩阵:所有特征值为非正。 不定矩阵 :特征值有正有负。    容易解出特征值一个为2,一个为-2( 有正有负 ),显然是不定矩阵, 注意: 函

    2024年02月03日
    浏览(46)
  • 【Java基础教程】(三十六)常用类库篇 · 第六讲:数学运算类——全面讲解Java数学计算支持类库,BigDecimal、Math、Random、DecimalFormat...~

    在现代软件开发中,数学计算是不可或缺的一部分。为了满足企业及开发人员对数学运算的需求,Java 提供了一系列强大而丰富的数学计算相关类,其中包括 Math 、 Random 、 BigDecimal 等等。这些类旨在提供高度精确和可靠的数学操作,使开发人员能够处理任何规模和复杂度的定

    2024年02月16日
    浏览(35)
  • 函数凹凸性与黑塞矩阵

    1 同济大学高等数学定义 2 国际上的定义 3 黑塞矩阵 我们从几何上看到,在有的曲线弧上,如果任取两点,则联结这两点间的弦总位于这两点间的弧段的上方,如图3-8(a);而有的曲线弧,则正好相反,如图 3-8(b)。曲线的这种性质就是曲线的凹凸性。 因此曲线的凹凸性可

    2024年02月08日
    浏览(34)
  • 由黑塞(Hessian)矩阵引发的关于正定矩阵的思考

    最近看论文,发现论文中有通过黑塞(Hessian)矩阵提高电驱系统稳定性的应用。所以本篇主要从Hessian矩阵的性质出发,对其中正定矩阵的判定所引发的想法进行记录。 (其实看论文出现黑塞很惊奇,因为前不久刚读了作家黑塞的《德米安:彷徨少年时》,所以在这一领域的黑塞

    2024年02月06日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包