数学建模:熵权法

这篇具有很好参考价值的文章主要介绍了数学建模:熵权法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛

熵权法

  1. 构建原始矩阵 D a t a Data Data 形状为 m ∗ n m *n mn ,其中 m m m 为评价对象, n n n 为评价指标。
  2. D a t a Data Data矩阵的指标进行正向化处理,得到矩阵 X X X.
  3. 计算每一个指标在每一个对象下的所占该指标的比重,然后我们便得到了变异值矩阵: P P P

p i j = Y y ¨ ∑ i = 1 m Y i j , i = 1 , ⋯   , m , j = 1 , ⋯   , n \begin{aligned}p_{ij}=\frac{Y_{\ddot{y}}}{\sum_{i=1}^m Y_{ij}},i=1,\cdots,m,j=1,\cdots,n\end{aligned} pij=i=1mYijYy¨,i=1,,m,j=1,,n

  1. 求各指标的信息熵 E E E

E j = − ln ⁡ ( m ) − 1 ∑ i = 1 m p i j ln ⁡ p i j E_j=-\ln(m)^{-1}\sum_{i=1}^mp_{ij}\ln p_{ij} Ej=ln(m)1i=1mpijlnpij

  1. 通过信息熵计算各个指标的权重 W W W :其中 k k k 是指标的个数,即 k = n k = n k=n

w j = 1 − E j k − Σ E j ( j = 1 , 2 , … , n ) w_j=\dfrac{1-E_j}{k-\Sigma E_j}(j=1,2,\ldots,n) wj=kΣEj1Ej(j=1,2,,n)

  1. 也可以通过计算信息冗余度来计算权重 W W W(本代码采取这种方法):

D j = 1 − E j w j = D j ∑ j = 1 m D j \begin{aligned}D_j&=1-E_j\\\\w_j&=\frac{D_j}{\sum_{j=1}^mD_j}\end{aligned} Djwj=1Ej=j=1mDjDj

  1. 计算每一个对象的最终得分

Z i = ∑ j = 1 n X i j W j , i ∈ ( 1 , 2 , 3 , . . . m ) Z_{i}\mathrm{=}\sum_{j=1}^{n}X_{ij}W_{j},i\in(1,2,3, ... m) Zi=j=1nXijWji(1,2,3,...m)文章来源地址https://www.toymoban.com/news/detail-686179.html

代码实现

function [Score,W]=mfunc_entropyMethod(data)
    % 熵权法:求解每个指标的权重
    % paramts: 
    %      data: 原始数据矩阵,(m,n) m为评价对象,n为评价指标
    % returns:
    %      Score:每个评价对象的综合得分
    %      W: 所有指标的权重

    %数据标准化到0.002-1区间
    data2=mapminmax(data',0.002,1);
    data2=data2';
    %得到信息熵
    [m,n]=size(data2); % m个对象,n个指标
    p=zeros(m,n);
    for j=1:n
        % 计算第j列的每一列指标在该指标中所占的比例
        p(:,j)=data2(:,j)/sum(data2(:,j));
    end 
    for j=1:n
       % 计算每个指标的信息熵
       E(j)=-1/log(m)*sum(p(:,j).*log(p(:,j)));
    end
    %计算权重
    W=(1-E)/sum(1-E); % 通过信息冗余度计算
    %计算得分
    s=data2*W';
    Score=100*s/max(s); 
end

到了这里,关于数学建模:熵权法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 《零基础数学建模》——TOPSIS+熵权法

    本文大部分是对于数学建模清风老师的课程学习总结归纳而来,我的理解可能有错误,大家发现错误可以在评论区批评指正,课程地址:《数学建模清风》   TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution)可翻译为逼近理想解排序法,国内常简称为优劣解距离法

    2023年04月09日
    浏览(38)
  • 建模笔记——熵权法(Python实现)

    熵权法是一种通过对已知数据的处理,从而获得影响因子权重的方法,其基本思路是根据指标变异性的大小来确定客观权重。 熵权法的优点在于其根据各项指标指标值的变异程度来确定指标权数的,是一种客观赋权法,避免了人为因素带来的偏差。相对那些主观赋值法,精度较

    2024年02月16日
    浏览(42)
  • 【建模算法】熵权法(Python实现)

    熵权法是通过寻找数据本身的规律来赋权重的一种方法。 熵是热力学单位,在数学中,信息熵表示事件所包含的信息量的期望。根据定义,对于某项指标,可以用熵值来判断某个指标的离散程度,其熵值越小,指标的离散程度越大,该指标对综合评价的影响(权重)越大。

    2024年02月04日
    浏览(39)
  • TOPSIS法(熵权法)(模型+MATLAB代码)

    TOPSIS可翻译为逼近理想解排序法,国内简称为优劣解距离法 TOPSIS法是一种常用的 综合评价方法 , 其能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的距离 极大型指标(效益型指标)  :越高(大)越好 极小型指标(成本型指标)  :越少(小)越好 中间

    2024年02月21日
    浏览(44)
  • 12.9建模复盘——EXCEL批量处理数据、查找数据、熵权法、可视化

    以下是一些可以查询英国国家数据的网站: 1. 英国政府网站(www.gov.uk):提供各个政府部门的数据和统计信息,包括经济、人口、教育、健康、环境等领域。 2. 英国国家统计局(www.ons.gov.uk):英国的官方统计机构,提供广泛的统计数据和报告,涵盖经济、劳动力、人口、

    2024年02月05日
    浏览(45)
  • 基于熵权法的topsis分析(包含matlab源码以及实例)

                 目录 一、算法简述          1.topsis分析法          2.熵权法          3.两种算法的结合 二、算法步骤          1.判断指标类型          2.数据正向化          3.正向化矩阵标准化          4.计算概率矩阵P          5.计算各个指标的信息熵

    2024年01月16日
    浏览(38)
  • 2023年数学建模:旅行商问题:数学建模与MATLAB实现

    目录 引言 问题定义 解决策略 MATLAB实现 数学建模案例

    2024年02月11日
    浏览(43)
  • 【数学建模】《实战数学建模:例题与讲解》第五讲-微分方程建模(含Matlab代码)

    如果这篇文章对你有帮助,欢迎点赞与收藏~ 微分方程建模是数学建模中一种极其重要的方法,它在解决众多实际问题时发挥着关键作用。这些实际问题的数学表述通常会导致求解特定的微分方程。将各种实际问题转换为微分方程的定解问题主要包括以下几个步骤: 确定研究

    2024年03月18日
    浏览(73)
  • 【数学建模】《实战数学建模:例题与讲解》第六讲-假设检验(含Matlab代码)

    如果这篇文章对你有帮助,欢迎点赞与收藏~ 假设检验是一种统计决策过程,用于判断样本数据是否支持某个特定的假设。主要有两类假设: 零假设(Null Hypothesis):通常表示为没有效应或差异的假设。 备择假设(Alternative Hypothesis):表示有效应或差异的假设。 假设检验的

    2024年02月03日
    浏览(57)
  • 【数学建模】《实战数学建模:例题与讲解》第七讲-Bootstrap方法(含Matlab代码)

    如果这篇文章对你有帮助,欢迎点赞与收藏~ Bootstrap方法是一种统计技术,用于估计一个样本统计量的分布(例如均值、中位数或标准偏差)。它通过从原始数据集中重复抽取样本(通常是带替换的)来工作,允许评估统计量的变异性和不确定性。这种方法特别有用于小样本

    2024年01月22日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包