AI 模型:数据收集和清洗

这篇具有很好参考价值的文章主要介绍了AI 模型:数据收集和清洗。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

为了训练AI模型,需要收集和准备足够的数据。数据应该涵盖各种情况和场景,以确保系统在各种情况下都能准确地运行。数据原始来源应该是真实的,并且应该涵盖系统预计的使用情况。数据应该根据特定的需求进行采样和处理,可以来自各种来源,例如公共数据集、第三方数据提供商、内部数据集和模拟数据集等。很多大模型训练的数据从广义上可以分成两大类,其一是通用文本数据,包含了网页、书籍、网络留言以及网络对话,这类主要是因为获取容易、数据规模大而被广泛的大模型利用,通用文本数据更容易提高大模型的泛化能力;其二是专用文本数据,主要是一些多语言类别的数据、科学相关的产出数据以及代码,这类数据可以提高大模型的专项任务的能力。在准备数据时,还应该注意数据的质量,例如数据的准确性、完整性和一致性。另外,还应该考虑隐私和安全问题,如果数据包含敏感信息,例如用户的个人身份信息,应该采取脱敏措施确保数据的安全性和隐私性。数据收集和准备是测试AI系统的重要步骤之一,需要充分的计划和准备,以确保测试的准确性和全面性。

数据收集完成后,通常是要对数据进行清洗,这里的清洗说的是对数据一些“不好”的内容的处理,这里的不好指的是数据的噪音、冗余、有毒等内容,从而确保数据集的质量和一致性。
AI 模型:数据收集和清洗,AI系统的测试入门与实践,人工智能

无论收集到的数据集是通用文本数据、还是专用文本数据都要经过一系列的数据清洗才能用于 LLM 模型的训练,在面对初始收集的数据集需要首先通过质量过滤提高数据集的数据质量,常规的做法是设计一组过滤规则,消除低质量的数据,从而实现数据质量的提高。那么常用的规则有基于语言的过滤规则、基于度量的过滤规则、基于关键词的过滤规则文章来源地址https://www.toymoban.com/news/detail-686345.html

到了这里,关于AI 模型:数据收集和清洗的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包