openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读

这篇具有很好参考价值的文章主要介绍了openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🧡💛💚💙💜OpenCV实战系列总目录

打印一个图片可以做出一个函数:

def cv_show(img,name):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()

1、轮廓特征与近似

1.1 轮廓特征

前面我们计算了这个图片的轮廓:

openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读,openCV实战,opencv,计算机视觉,python

 它的轮廓信息保存在了contours中,取出第一个轮廓,计算相关参数:

cnt = contours[0]
cv2.contourArea(cnt)
cv2.arcLength(cnt,True)

打印结果:

8500.5 
437.9482651948929

这是分别求出了周长和面积,这里的True表示的是否是闭合的。 

1.2 轮廓近似

 openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读,openCV实战,opencv,计算机视觉,python

如图,第一个图是原图,如果将它的轮廓计算出来应该是第三个图的结果,但是我不想要这样一些带坑坑洼洼的结果,我只想要图2这样的结果呢?

原图中含有一些曲线,比如有一条曲线,这条曲线有A、B两个点,先将这两个点连上,在曲线中选到一个C点,使得这个C点到AB这条直线上距离最大,如果这个距离d小于指定的阈值t,那么这个AB直线就可以当做曲线的近似了。

那如果大于设定的阈值呢?那么曲线就会被分解成两个部分变成两个曲线,AC和BC,然后AC和BC继续去做前面的判断操作一直到找到近似直线。

但是在代码的实现却非常简单:

img = cv2.imread('contours2.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]

draw_img = img.copy()
res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
cv_show(res,'res')

每行代码的意思:

  1. 读进来图像,还是前面的图像
  2. 做二值处理
  3. 找轮廓信息 
  4. 找出第一个轮廓
  5. 深度复制图像
  6. 提取轮廓信息
  7. 将轮廓图像打印

打印结果: 

openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读,openCV实战,opencv,计算机视觉,python

 接下来做轮廓近似的处理:

epsilon = 0.1*cv2.arcLength(cnt,True) 
approx = cv2.approxPolyDP(cnt,epsilon,True)

draw_img = img.copy()
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
cv_show(res,'res')

关键代码:approx = cv2.approxPolyDP(cnt,epsilon,True)

cv2.approxPolyDP这是计算轮廓的函数,第一个参数表示计算的轮廓,第二个是指定的阈值,这个阈值是自己指定的,一般通过周长来计算,所以approx是计算的轮廓信息,再用cv2.drawContours将轮廓拟合出来,打印图像。

打印结果:

openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读,openCV实战,opencv,计算机视觉,python

 这就是近似完的结果,这里可以调整前面计算周长的权重0.1多执行几次,这个值指定的越小结果越接近原始轮廓。

1.3 边界矩阵

 继续用上面的图片,如何将一个轮廓的外接矩形标出来呢?不废话直接上代码:

img = cv2.imread('contours.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[5]

x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')

前面几行都已经学习过了,直接看到这里

x,y,w,h = cv2.boundingRect(cnt)

cnt是轮廓信息,通过cv2.boundingRect可以计算出四个值x,y,w,h,一个坐标加上长宽,有这个信息就可以得到一个确定的矩形。

通过这个函数cv2.rectangle,依次传进去图像,坐标1,坐标2,颜色,线条宽度,拟合出这个轮廓

打印结果:

openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读,openCV实战,opencv,计算机视觉,python

 计算外接矩形和原始图形的面积比值:

area = cv2.contourArea(cnt)
x, y, w, h = cv2.boundingRect(cnt)
rect_area = w * h
extent = float(area) / rect_area
print ('轮廓面积与边界矩形比',extent)

第一行是计算原始面积,第二行+第三行计算外接矩形的面积,然后计算比值打印出来:

轮廓面积与边界矩形比 0.5154317244724715

外接圆:

(x,y),radius = cv2.minEnclosingCircle(cnt) 
center = (int(x),int(y)) 
radius = int(radius) 
img = cv2.circle(img,center,radius,(0,255,0),2)
cv_show(img,'img')

 openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读,openCV实战,opencv,计算机视觉,python

2、模板匹配方法

模板匹配在openCV中是非常重要的内容,和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1) 

openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读,openCV实战,opencv,计算机视觉,pythonopenCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读,openCV实战,opencv,计算机视觉,python

如图这是两个图片,我需要做的是将lena脸的部分框出来,然后右图相当于是标签,假如左图是一个9*9的图像,右图是一个3*3的图像,那么左图可以分解成9个3*3的图像,将右图与这9个区域的图像进行比对,通过计算两个图像的像素匹配程度来判断是这9个区域的那一个区域,9个区域就是从左至右从上至下一个一个进行匹配。

那这个匹配程度怎么计算呢,openCV提供了多种方法来计算,比如计算对应位置之间的像素值差异,差异值就是量化匹配程度,当然差异值越小说明匹配程度越接近。具体的匹配方法:

  • TM_SQDIFF:计算平方不同,计算出来的值越小,越相关
  • TM_CCORR:计算相关性,计算出来的值越大,越相关
  • TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
  • TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关
  • TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
  • TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关

这里给出一个openCV官网链接,是上面这些匹配方法的计算公式:

OpenCV: Object Detection

分别将lena和模板(lena的脸)读进来,转化为灰度图后打印出大小:

# 模板匹配
img = cv2.imread('lena.jpg', 0)
template = cv2.imread('face.jpg', 0)
h, w = template.shape[:2]
print(img.shape)
print(template.shape)

h和w是模板的长和宽,打印的shape值为:

(263, 263)

(110, 85)

 调用模板匹配操作:

methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
           'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
print(res.shape)

methods是所有方法

 cv2.matchTemplate的参数分别为原始图像、模板、匹配方法

然后打印shape值

打印结果:

(154, 179)

这里的154=263-110+1,179=263-85+1

用这个结果去定位一下最小损失的那个像素点的位置:

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
print(min_val, max_val, min_loc, max_loc)

 打印结果:

39168.0

74403584.0

(107, 89)

(159, 62)

在这个匹配方法中,我们需要的是min_loc,这个点的坐标再加上模板的长宽,就可以得到我们想要框住的区域了。

3、模板匹配效果

用6种不同的匹配方法进行模板匹配,看下结果的差异:

for meth in methods:
    img2 = img.copy()

    # 匹配方法的真值
    method = eval(meth)
    print (method)
    res = cv2.matchTemplate(img, template, method)
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

    # 如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值
    if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
        top_left = min_loc
    else:
        top_left = max_loc
    bottom_right = (top_left[0] + w, top_left[1] + h)

    # 画矩形
    cv2.rectangle(img2, top_left, bottom_right, 255, 2)

    plt.subplot(121), plt.imshow(res, cmap='gray')
    plt.xticks([]), plt.yticks([])  # 隐藏坐标轴
    plt.subplot(122), plt.imshow(img2, cmap='gray')
    plt.xticks([]), plt.yticks([])
    plt.suptitle(meth)
    plt.show()

对这个代码块逐行解释:

  1. for循环
  2. 深度复制图像
  3. 取出当前匹配方法名称(前面有一个数组存了全部的6个方法)(加上eval的原因是不能传进来一个字符串)
  4. 计算一个结果
  5. 找出最好结果和最坏结果的差异程度值和坐标
  6. 判断当前方法是算最小值为最佳结果还是最大值为最佳结果
  7. 6已解释
  8. 6已解释
  9. 6已解释
  10. 计算出右下角的坐标
  11. 通过对焦的两个点的坐标画出一个矩形将目标区域框出来
  12. 后面全是将结果打印出来

打印结果几乎都是一样的,就只列出一个了:

openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读,openCV实战,opencv,计算机视觉,python

 左边的图好理解,就是将lena的脸框出来了,我们完成了任务,右边就是计算出了一个最亮的位置也就是前面res变量的输出结果。

没有加上归一化操作的结果会稍微差点。

同样的道理我们做一下多个模板的匹配,比如一张图上有多个模板需要全部框出来:

img_rgb = cv2.imread('mario.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('mario_coin.jpg', 0)
h, w = template.shape[:2]

res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.8
# 取匹配程度大于%80的坐标
loc = np.where(res >= threshold)
for pt in zip(*loc[::-1]):  # *号表示可选参数
    bottom_right = (pt[0] + w, pt[1] + h)
    cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)

cv2.imshow('img_rgb', img_rgb)
cv2.waitKey(0)

打印结果:

openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读,openCV实战,opencv,计算机视觉,python文章来源地址https://www.toymoban.com/news/detail-686483.html

到了这里,关于openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【课程介绍】OpenCV 基础入门教程:图像读取、显示、保存,图像处理和增强(如滤波、边缘检测、图像变换),特征提取和匹配,目标检测和跟踪

    [ 专栏推荐 ] 😃 《视觉探索: OpenCV 基础入门教程》 😄 ❤️【简介】: Opencv 入门课程适合初学者,旨在介绍 Opencv 库的基础知识和核心功能。课程包括图像读取、显示、保存,图像处理和增强(如滤波、边缘检测、图像变换),特征提取和匹配,目标检测和跟踪等内容。学

    2024年02月16日
    浏览(45)
  • 【OpenCV-Python】——边缘和轮廓&Laplacian/Sobel/Canny边缘检测&查找/绘制轮廓及轮廓特征&霍夫直线/圆变换

    目录 前言: 1、边缘检测 1.1 Laplacian边缘检测  1.2 Sobel边缘检测  1.3 Canny边缘检测 2、图像轮廓 2.1 查找轮廓  2.2 绘制轮廓 2.3 轮廓特征 3、霍夫变换 3.1 霍夫直线变换  3.2 霍夫圆变换 总结: 图像的边缘是指图像中灰度值急剧变化的位置,边缘检测的目的是为了绘制边缘线条。

    2024年01月23日
    浏览(36)
  • openCV 图像特征点检测与匹配

            1.图像搜索,以图搜图。         2.拼图游戏。         3.图像拼接,将两张有关联的图拼接在一起。         图像特征就是指有意义的图像区域,具有独特性、易于识别性,比如角点、斑点以及高密度区。          从上图我们可以发现:         A、

    2024年02月09日
    浏览(75)
  • 004 OpenCV akaze特征点检测匹配

    目录 一、环境 二、akaze特征点算法 2.1、基本原理 2.2、实现过程 2.3、实际应用 2.4、优点与不足 三、代码 3.1、数据准备 3.2、完整代码 本文使用环境为: Windows10 Python 3.9.17 opencv-python 4.8.0.74 特征点检测算法AKAZE是一种广泛应用于图像处理领域的算法,它可以在不同尺度下提取

    2024年02月02日
    浏览(27)
  • OpenCV(图像处理)-基于Python-特征检测-特征点匹配

    图像特征就是指有意义的图像区域,具有独特性,易于识别性,比如角点、斑点以及高密度区。而为什么角点具有重要的特征呢? 看下图: 观察ABD三张图片,我们不容易得知图像的位置,而CEF三张图我们特别容易找到它们在原图中对应的位置,这是因为ABD比较平滑,我们不

    2024年02月03日
    浏览(33)
  • OpenCV实战(18)——特征匹配

    在关键点检测一节中,我们学习了如何检测图像中的关键点,其目的是用于执行局部图像分析。这些关键点需要足够独特,以便在具有相同对象的不同图像中能够检测到相同的点。 基于关键点执行图像分析需要构建丰富的表示来唯一地描述这些关键点,本节将重点介绍如何从

    2024年02月03日
    浏览(28)
  • Opencv (C++)系列学习---模板匹配

    目录 1.模板匹配的定义 2.API介绍 3.寻找最优匹配位置(匹配后的配套操作) 4.具体代码         模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域,该匹配方法并不是基于直方图,而是使用一个图像块在输入图像上进行“”滑动“”。(也就是在图像上按照

    2024年02月08日
    浏览(36)
  • 特征点的检测与匹配(ORB,SIFT,SURFT比较)[opencv-python]

    本文旨在总结opencv-python上特征点的检测和匹配。 1、特征点的检测(包括:ORB,SIFT,SURFT) 2、特侦点匹配方法 (包括:暴力法,FLANN,以及随机抽样一致性优化RANSAC算法) 注:由于SURF专利问题,所以opencv官方包目前不支持SURF但支持ORB和SIFT,安装opencv-contrib-python包就可以解决 一

    2024年02月06日
    浏览(34)
  • 如何在OpenCV中实现图像的边缘检测和轮廓提取?opencv教程

    在OpenCV中,可以使用边缘检测算法和轮廓提取函数来实现图像的边缘检测和轮廓提取。以下是一种常用的方法: 边缘检测: 在OpenCV中,常用的边缘检测算法包括Canny边缘检测和Sobel算子。 Canny边缘检测: Canny边缘检测是一种广泛使用的边缘检测算法,它能够有效地检测出图像

    2024年02月15日
    浏览(25)
  • openCV实战-系列教程5:边缘检测(Canny边缘检测/高斯滤波器/Sobel算子/非极大值抑制/线性插值法/梯度方向/双阈值检测 )、原理解析、源码解读 ?????OpenCV实战系列总目录

    打印一个图片可以做出一个函数: Canny是一个科学家在1986年写了一篇论文,所以用自己的名字来命名这个检测算法,Canny边缘检测算法这里写了5步流程,会用到之前《openCV实战-系列教程》的内容。  使用高斯滤波器,以平滑图像,滤除噪声。 计算图像中每个像素点的梯度强

    2024年02月11日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包