学习pytorch8 土堆说卷积操作

这篇具有很好参考价值的文章主要介绍了学习pytorch8 土堆说卷积操作。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

B站小土堆视频学习笔记

官网

https://pytorch.org/docs/stable/nn.html#convolution-layers

常用torch.nn, nn是对nn.functional的封装,使函数更易用。
学习pytorch8 土堆说卷积操作,学习pytorch,python,pytorch,卷积神经网络
学习pytorch8 土堆说卷积操作,学习pytorch,python,pytorch,卷积神经网络
卷积核从输入图像左上角,先向右遍历行,stride为1 挪一个格位置,向右遍历完,向下一格,再从左向右遍历。
卷积核和输入图像对应位置相乘后结果想加,得到右边的输出结果。
stride
学习pytorch8 土堆说卷积操作,学习pytorch,python,pytorch,卷积神经网络

padding
学习pytorch8 土堆说卷积操作,学习pytorch,python,pytorch,卷积神经网络

debug torch版本只有nn 没有nn.functional

 conda activate pytorch
 conda install pytorch-cpu torchvision-cpu -c pytorch

在当前环境安装pytorch-cpu后,functional函数就可以调用啦

https://www.saoniuhuo.com/question/detail-2646442.html文章来源地址https://www.toymoban.com/news/detail-686798.html

代码

import torch
from torch.nn import functional as F

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])

kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])

input = torch.reshape(input, [1, 1, 5, 5])
kernel = torch.reshape(kernel, [1, 1, 3, 3])
print(input.shape)
print(kernel.shape)
output1 = F.conv2d(input, kernel, stride=1)
print(output1)

output2 = F.conv2d(input, kernel, stride=2)
print(output2)
# 默认padding=0
output3 = F.conv2d(input, kernel, stride=1, padding=1)
print(output3)

执行结果

p14_conv.py
torch.Size([1, 1, 5, 5])
torch.Size([1, 1, 3, 3])
tensor([[[[10, 12, 12],
          [18, 16, 16],
          [13,  9,  3]]]])
tensor([[[[10, 12],
          [13,  3]]]])
tensor([[[[ 1,  3,  4, 10,  8],
          [ 5, 10, 12, 12,  6],
          [ 7, 18, 16, 16,  8],
          [11, 13,  9,  3,  4],
          [14, 13,  9,  7,  4]]]])

Process finished with exit code 0

到了这里,关于学习pytorch8 土堆说卷积操作的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 卷积神经网络——上篇【深度学习】【PyTorch】【d2l】

    5.1.1、理论部分 全连接层后,卷积层出现的意义? 一个足够充分的照片数据集,输入,全连接层参数,GPU成本,训练时间是巨大的。 (convolutional neural networks,CNN)是机器学习利用自然图像中一些已知结构的创造性方法,需要更少的参数,在处理图像和其他类型的结构化数据

    2024年02月12日
    浏览(43)
  • 卷积神经网络——中篇【深度学习】【PyTorch】【d2l】

    5.5.1、理论部分 两个⌈ 卷积块 ⌋ 每个卷积块中的基本单元是一个⌈ 卷积层 ⌋、一个 ⌈ sigmoid激活函数 ⌋和 ⌈ 平均汇聚层 ⌋ 三个⌈ 全连接层密集块 ⌋ 早期神经网络,先使用卷积层学习图片空间信息,然后全连接层转换到类别空间。 5.5.2、代码实现 定义一个 Sequential块

    2024年02月11日
    浏览(53)
  • 卷积神经网络学习—Resnet50(论文精读+pytorch代码复现)

    如果说在CNN领域一定要学习一个卷积神经网络,那一定非Resnet莫属了。 接下来我将按照:Resnet论文解读、Pytorch实现ResNet50模型两部分,进行讲解,博主也是初学者,不足之处欢迎大家批评指正。 预备知识 :卷积网络的深度越深,提取的特征越高级,性能越好,但传统的卷积

    2024年01月19日
    浏览(43)
  • PyTorch实战:卷积神经网络详解+Python实现卷积神经网络Cifar10彩色图片分类

    目录 前言 一、卷积神经网络概述 二、卷积神经网络特点 卷积运算 单通道,二维卷积运算示例 单通道,二维,带偏置的卷积示例 带填充的单通道,二维卷积运算示例 Valid卷积 Same卷积 多通道卷积计算 1.局部感知域 2.参数共享 3.池化层 4.层次化提取  三、卷积网络组成结构

    2024年02月07日
    浏览(54)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十八):卷积神经网络模型

    发布时间:1989年 模型目的:识别手写数字 1.3.1 相关函数原型 1)nn.Conv2d:卷积层

    2024年02月13日
    浏览(73)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十七):卷积神经网络入门

    我们在前面学习的多层感知机中,已经认识了全链接层,缺点很明显,在稍微大点的网络模型中,参数成指数级别增长。参数量很快就达到数十亿,这样的量级几乎无法计算。为此科学家们想出一个减少参数的方法:卷积。 从全链接层到卷积的推论,使用如下两个原则: 平

    2024年02月13日
    浏览(59)
  • Python基于PyTorch实现卷积神经网络分类模型(CNN分类算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connec

    2024年02月15日
    浏览(47)
  • Python基于PyTorch实现卷积神经网络回归模型(CNN回归算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connec

    2024年02月15日
    浏览(45)
  • PyToch 深度学习 || 3. 卷积神经网络 | 3.1 深度学习中的卷积操作

    加权求和是一种非常重要的运算,可以整合局部数字特征进而是提取局部信息的重要手段。这种加权求和的形式被称作卷积或者滤波,对于两个信号 f ( x

    2024年02月15日
    浏览(32)
  • Pytorch 与 Tensorflow对比学习 第3周:进阶主题 Day 15-16: 卷积神经网络(CNN)

    第3周:进阶主题 Day 15-16: 卷积神经网络(CNN) 在这两天中,我专注于学习卷积神经网络(CNN)的基础知识,包括卷积层和池化层的工作原理以及它们在图像处理中的应用。 卷积神经网络基础: 卷积层:学习了卷积层如何通过滤波器(或称为核)提取图像的特征。每个滤波器

    2024年01月20日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包