文献阅读:Deep Learning Enabled Semantic Communication Systems

这篇具有很好参考价值的文章主要介绍了文献阅读:Deep Learning Enabled Semantic Communication Systems。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


论文简介

  • 作者
    Huiqiang Xie
    Zhijin Qin
    Geoffrey Ye Li
    Biing-Hwang Juang

  • 发表期刊or会议
    《IEEE TRANSACTIONS ON SIGNAL PROCESSING》

  • 发表时间
    2021.4

  • 这篇论文由《Deep Learning based Semantic Communications: An Initial Investigation》扩展而来


关于文章内容的总结

框架或结构 作用
DeepSC 最大化系统容量、最小化语义误差
设计两个Loss函数 理解语义信息、最大化系统容量
语义-信道联合编码 保持 s s s s ^ \hat s s^之间的含义不变← L C E \mathcal{L}_{\mathrm{CE}} LCE用于衡量 s s s s ^ \hat s s^之间的差异
语义-信道联合编码 使网络学习特定目标的知识(联合设计时,信道编码可以注重保护与传输和目标相关的语义信息,而忽略其他不相关的信息)
L C E \mathcal{L}_{\mathrm{CE}} LCE 通过训练整个系统来最小化 s s s s ^ \hat s s^之间的差异
L MI  \mathcal{L}_{\text {MI }} LMI  最大化发射机训练期间实现的数据速率

引申出不理解的问题

文献阅读:Deep Learning Enabled Semantic Communication Systems,智简网络&语义通信 文献阅读,人工智能,6G,语义通信,智简网络,无线通信

  • 语义-信道联合编码在上图流程中属于哪部分?
    个人理解:整个流程都是

  • 联合设计收发器在上图流程中属于哪部分?
    未解决

  • 以下概念分不清楚

    文献阅读:Deep Learning Enabled Semantic Communication Systems,智简网络&语义通信 文献阅读,人工智能,6G,语义通信,智简网络,无线通信文章来源地址https://www.toymoban.com/news/detail-687281.html

    • E2E通信系统是一种形式
      自编码器是一种结构
      通信系统物理层收发机与自编码器在功能和结构上是相似的。自编码器的主要功能是实现数据重构,而通信系统的主要功能是在接收端恢复发射端的信号。
      若把收发信机看成一种自编码器结构,则发射机与接收机分别对应于自编码器的编码器与译码器。因此,通信系统收发信机的最优化设计就转变为自编码器端到端的优化任务。

到了这里,关于文献阅读:Deep Learning Enabled Semantic Communication Systems的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文翻译——Test Selection for Deep Learning Systems

    Abstract 因为深度学习涉及到复杂并且大量的计算,所以对于深度学习的检测十分困难。而且测试数据一般都只能人工选择,并且只能一个一个标注。这就是提出了一个问题,如果我们能够自动选择候选数据去测试深度学习模型。最近的研究都是集中在定义衡量测试集彻底度的

    2024年02月08日
    浏览(51)
  • 《Communication-Efficient Learning of Deep Networks from Decentralized Data》

    这篇文章算是联邦学习的开山之作吧,提出了FedAvg的算法,文中对比了不同客户端本地训练次数,客户端训练数据集划分的影响。 现代移动设备可以获取大量适合学习模型的数据,然而,这些丰富的数据通常是隐私敏感的、数量很大的,这可能导致无法记录到数据中心并使用

    2024年02月16日
    浏览(41)
  • 【论文阅读】Deep Graph Contrastive Representation Learning

    作者:Yanqiao Zhu Yichen Xu 文章链接:Deep Graph Contrastive Representation Learning 代码链接:Deep Graph Contrastive Representation Learning 现实世界中,图的标签数量较少,尽管GNNs蓬勃发展,但是训练模型时标签的可用性问题也越来越受到关心。 传统的无监督图表征学习方法,例如DeepWalk和nod

    2024年01月18日
    浏览(54)
  • 论文阅读--Deep Learning-Based Channel Estimation

    论文信息: Soltani M, Pourahmadi V, Mirzaei A, et al. Deep learning-based channel estimation[J]. IEEE Communications Letters, 2019, 23(4): 652-655. 创新点: 信道时频响应建模为图像,将OFDM的时频特性视做一种2D图像信息。 将导频位置的通道响应视为LR图像,并将估计的通道响应视为HR图像。 利用基于深度

    2024年02月01日
    浏览(45)
  • 【论文阅读】The Deep Learning Compiler: A Comprehensive Survey

    论文来源:Li M , Liu Y , Liu X ,et al.The Deep Learning Compiler: A Comprehensive Survey[J]. 2020.DOI:10.1109/TPDS.2020.3030548. 这是一篇关于深度学习编译器的综述类文章。 什么是深度学习编译器 深度学习(Deep Learning)编译器将深度学习框架描述的模型在各种硬件平台上生成有效的代码实现,其完

    2024年02月15日
    浏览(47)
  • 论文阅读【14】HDLTex: Hierarchical Deep Learning for Text Classification

    论文十问十答: Q1论文试图解决什么问题? 多标签文本分类问题 Q2这是否是一个新的问题? 不是 Q3这篇文章要验证一个什么科学假设? 因为文本标签越多,分类就越难,所以就将文本类型进行分层分类,这样就可以加大文本分类的准确度。 Q4有哪些相关研究?如何归类?谁

    2023年04月09日
    浏览(39)
  • 材料论文阅读/中文记录:Scaling deep learning for materials discovery

    Merchant A, Batzner S, Schoenholz S S, et al. Scaling deep learning for materials discovery[J]. Nature, 2023: 1-6. 全文速览 这篇文章主要讲了一种名为 GNoME 的 材料发现框架 。该框架利用机器学习和高通量计算方法,通过预测材料的稳定性和性质,加速新材料的发现。文章介绍了GNoME的 工作原理和方

    2024年02月02日
    浏览(61)
  • Deep learning of free boundary and Stefan problems论文阅读复现

    在这项工作中,作者提出了一个基于物理信息神经网络的多网络模型,来解决一类一般的正和逆自由边界问题,称为Stefan问题。具体地说,用两个深度神经网络来近似未知解以及任何移动边界。作者提供了三个案例研究(一维一相Stefan问题,一维二相Stefan问题,二维一相Ste

    2024年02月08日
    浏览(45)
  • An End-to-End Learning-Based Metadata Management Approach for Distributed File Systems——论文阅读

    TC 2022 Paper,元数据论文阅读汇总 “multiple metadata server (MDS)” 多个元数据服务器 “locality preserving hashing (LPH)” 局部保持哈希 “Multiple Subset Sum Problem (MSSP).” 多子集和问题 “polynomial-time approximation scheme (PTAS)” 多项式时间近似方法 目前的分布式文件系统被设计用于支持 PB 规

    2024年02月02日
    浏览(48)
  • 【论文阅读】Deep learning for unmanned aerial vehicles detection: A review.

    Al-lQubaydhi, N., Alenezi, A., Alanazi, T., Senyor, A., Alanezi, N., Alotaibi, B., Alotaibi, M., Razaque, A., Hariri, S. (2024). Deep learning for unmanned aerial vehicles detection: A review. Computer Science Review, 51(100614), 100614. https://doi.org/10.1016/j.cosrev.2023.100614 深度学习用于无人机检测:综述。 摘要: 无人机作为一种新

    2024年01月16日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包