计算机视觉-卷积神经网络

这篇具有很好参考价值的文章主要介绍了计算机视觉-卷积神经网络。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

计算机视觉的发展历程

卷积神经网络

卷积(Convolution)

卷积计算

感受野(Receptive Field)

步幅(stride)

感受野(Receptive Field)

多输入通道、多输出通道和批量操作

卷积算子应用举例


计算机视觉作为一门让机器学会如何去“看”的学科,具体的说,就是让机器去识别摄像机拍摄的图片或视频中的物体,检测出物体所在的位置,并对目标物体进行跟踪,从而理解并描述出图片或视频里的场景和故事,以此来模拟人脑视觉系统。因此,计算机视觉也通常被叫做机器视觉,其目的是建立能够从图像或者视频中“感知”信息的人工系统。

计算机视觉技术经过几十年的发展,已经在交通(车牌识别、道路违章抓拍)、安防(人脸闸机、小区监控)、金融(刷脸支付、柜台的自动票据识别)、医疗(医疗影像诊断)、工业生产(产品缺陷自动检测)等多个领域应用,影响或正在改变人们的日常生活和工业生产方式。未来,随着技术的不断演进,必将涌现出更多的产品和应用,为我们的生活创造更大的便利和更广阔的机会。
 

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能


图1:计算机视觉技术在各领域的应用

重点介绍计算机视觉的经典模型(卷积神经网络)和两个典型任务(图像分类和目标检测)。主要涵盖如下内容:

卷积神经网络:卷积神经网络(Convolutional Neural Networks, CNN)是计算机视觉技术最经典的模型结构。本教程主要介绍卷积神经网络的常用模块,包括:卷积、池化、激活函数、批归一化、丢弃法等。

  • 图像分类:介绍图像分类算法的经典模型结构,包括:LeNet、AlexNet、VGG、GoogLeNet、ResNet,并通过眼疾筛查的案例展示算法的应用。

  • 目标检测:介绍目标检测YOLOv3算法,并通过林业病虫害检测案例展示YOLOv3算法的应用。

计算机视觉的发展历程

计算机视觉的发展历程要从生物视觉讲起。对于生物视觉的起源,目前学术界尚没有形成定论。有研究者认为生物视觉产生于距今约5亿年前寒武纪。寒武纪生物大爆发的原因一直是个未解之谜,不过可以肯定的是在寒武纪动物具有了视觉能力,捕食者可以更容易地发现猎物,被捕食者也可以更早的发现天敌的位置。

视觉能力加剧了猎手和猎物之间的博弈,也催生出更加激烈的生存演化规则。视觉系统的形成有力地推动了食物链的演化,加速了生物进化过程,是生物发展史上重要的里程碑。经过几亿年的演化,目前人类的视觉系统已经具备非常高的复杂度和强大的功能,人脑中神经元数目达到了1000亿个,这些神经元通过网络互相连接,这样庞大的视觉神经网络使得我们可以很轻松的观察周围的世界,如 图2 所示。
 

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能


图2:人类视觉感知


 

对人类来说,识别猫和狗是件非常容易的事。但对计算机来说,即使是一个精通编程的高手,也很难轻松写出具有通用性的程序(比如:假设程序认为体型大的是狗,体型小的是猫,但由于拍摄角度不同,可能一张图片上猫占据的像素比狗还多)。那么,如何让计算机也能像人一样看懂周围的世界呢?研究者尝试着从不同的角度去解决这个问题,由此也发展出一系列的子任务,如 图3 所示。
 

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能


图3:计算机视觉子任务示意图


 

  • (a) Image Classification: 图像分类,用于识别图像中物体的类别(如:bottle、cup、cube)。

  • (b) Object Localization: 目标检测,用于检测图像中每个物体的类别,并准确标出它们的位置。

  • © Semantic Segmentation: 图像语义分割,用于标出图像中每个像素点所属的类别,属于同一类别的像素点用一个颜色标识。

  • (d) Instance Segmentation: 实例分割,值得注意的是,(b)中的目标检测任务只需要标注出物体位置,而(d)中的实例分割任务不仅要标注出物体位置,还需要标注出物体的外形轮廓。

在早期的图像分类任务中,通常是先人工提取图像特征,再用机器学习算法对这些特征进行分类,分类的结果强依赖于特征提取方法,往往只有经验丰富的研究者才能完成,如 图4 所示。
 

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能


图4:早期的图像分类任务

在这种背景下,基于神经网络的特征提取方法应运而生。Yann LeCun是最早将卷积神经网络应用到图像识别领域的,

其主要逻辑是使用卷积神经网络提取图像特征

并对图像所属类别进行预测

通过训练数据不断调整网络参数

最终形成一套能自动提取图像特征并对这些特征进行分类的网络,如 图5 所示。
 

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能


图5:早期的卷积神经网络处理图像任务示意
 

这一方法在手写数字识别任务上取得了极大的成功,但在接下来的时间里,却没有得到很好的发展。其主要原因一方面是数据集不完善,只能处理简单任务,在大尺寸的数据上容易发生过拟合;另一方面是硬件瓶颈,网络模型复杂时,计算速度会特别慢。

目前,随着互联网技术的不断进步,数据量呈现大规模的增长,越来越丰富的数据集不断涌现。另外,得益于硬件能力的提升,计算机的算力也越来越强大。不断有研究者将新的模型和算法应用到计算机视觉领域。由此催生了越来越丰富的模型结构和更加准确的精度,同时计算机视觉所处理的问题也越来越丰富,包括分类、检测、分割、场景描述、图像生成和风格变换等,甚至还不仅仅局限于2维图片,包括视频处理技术和3D视觉等。

卷积神经网络

卷积神经网络是目前计算机视觉中使用最普遍的模型结构,包括:

  • 卷积(Convolution)
  • 池化(Pooling)
  • ReLU激活函数
  • 批归一化(Batch Normalization)
  • 丢弃法(Dropout)

我们介绍了手写数字识别任务,应用的是全连接网络进行特征提取,即将一张图片上的所有像素点展开成一个1维向量输入网络,存在如下两个问题:

1. 输入数据的空间信息被丢失。 空间上相邻的像素点往往具有相似的RGB值,RGB的各个通道之间的数据通常密切相关,但是转化成1维向量时,这些信息被丢失。同时,图像数据的形状信息中,可能隐藏着某种本质的模式,但是转变成1维向量输入全连接神经网络时,这些模式也会被忽略。

2. 模型参数过多,容易发生过拟合。 在手写数字识别案例中,每个像素点都要跟所有输出的神经元相连接。当图片尺寸变大时,输入神经元的个数会按图片尺寸的平方增大,导致模型参数过多,容易发生过拟合。

为了解决上述问题,我们引入卷积神经网络进行特征提取,既能提取到相邻像素点之间的特征模式,又能保证参数的个数不随图片尺寸变化。

图6 是一个典型的卷积神经网络结构,

多层卷积和池化层组合作用在输入图片上

在网络的最后通常会加入一系列全连接层

ReLU激活函数一般加在卷积或者全连接层的输出上

网络中通常还会加入Dropout来防止过拟合。


 

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能


图6:卷积神经网络经典结构


说明:

在卷积神经网络中,计算范围是在像素点的空间邻域内进行的,卷积核参数的数目也远小于全连接层。卷积核本身与输入图片大小无关,它代表了对空间邻域内某种特征模式的提取。比如,有些卷积核提取物体边缘特征,有些卷积核提取物体拐角处的特征,图像上不同区域共享同一个卷积核。当输入图片大小不一样时,仍然可以使用同一个卷积核进行操作。


卷积(Convolution)

这一小节将为读者介绍卷积算法的原理和实现方案,并通过具体的案例展示如何使用卷积对图片进行操作,主要涵盖如下内容:

  • 卷积计算

  • 填充(padding)

  • 步幅(stride)

  • 感受野(Receptive Field)

  • 多输入通道、多输出通道和批量操作

  • 卷积算子应用举例

卷积计算

卷积是数学分析中的一种积分变换的方法

在图像处理中采用的是卷积的离散形式。这里需要说明的是,在卷积神经网络中,卷积层的实现方式实际上是数学中定义的互相关 (cross-correlation)运算

与数学分析中的卷积定义有所不同,这里跟其他框架和卷积神经网络的教程保持一致,都使用互相关运算作为卷积的定义,具体的计算过程如 图7 所示。


 

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能


图7:卷积计算过程


说明:

卷积核(kernel)也被叫做滤波器(filter),假设卷积核的高和宽分别为kh​和kw​,则将称为kh×kw卷积,比如3×5卷积,就是指卷积核的高为3, 宽为5。


计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能

 计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能

 

  • 【思考】 当卷积核大小为3×33 \times 33×3时,bbb和aaa之间的对应关系应该是怎样的?

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能


图8:图形填充

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能

 

  • 计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能

    感受野(Receptive Field)

    输出特征图上每个点的数值,是由输入图片上大小为kh×kwk_h\times k_wkh​×kw​的区域的元素与卷积核每个元素相乘再相加得到的,所以输入图像上kh×kwk_h\times k_wkh​×kw​区域内每个元素数值的改变,都会影响输出点的像素值。我们将这个区域叫做输出特征图上对应点的感受野。感受野内每个元素数值的变动,都会影响输出点的数值变化。比如3×33\times33×3卷积对应的感受野大小就是3×33\times33×3,如 图10 所示。


     

    计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能


    图10:感受野为3×3的卷积


    而当通过两层3×33\times33×3的卷积之后,感受野的大小将会增加到5×55\times55×5,如 图11 所示。

     

步幅(stride)

图8 中卷积核每次滑动一个像素点,这是步幅为1的特殊情况。图9 是步幅为2的卷积过程,卷积核在图片上移动时,每次移动大小为2个像素点。
 

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能


图9:步幅为2的卷积过程


 

当宽和高方向的步幅分别为shs_hsh​和sws_wsw​时,输出特征图尺寸的计算公式是:

Hout=H+2ph−khsh+1H_{out} = \frac{H + 2p_h - k_h}{s_h} + 1Hout​=sh​H+2ph​−kh​​+1

Wout=W+2pw−kwsw+1W_{out} = \frac{W + 2p_w - k_w}{s_w} + 1Wout​=sw​W+2pw​−kw​​+1

假设输入图片尺寸是H×W=100×100H\times W = 100 \times 100H×W=100×100,卷积核大小kh×kw=3×3k_h \times k_w = 3 \times 3kh​×kw​=3×3,填充ph=pw=1p_h = p_w = 1ph​=pw​=1,步幅为sh=sw=2s_h = s_w = 2sh​=sw​=2,则输出特征图的尺寸为:

Hout=100+2−32+1=50H_{out} = \frac{100 + 2 - 3}{2} + 1 = 50Hout​=2100+2−3​+1=50

Wout=100+2−32+1=50W_{out} = \frac{100 + 2 - 3}{2} + 1 = 50Wout​=2100+2−3​+1=50

感受野(Receptive Field)

输出特征图上每个点的数值,是由输入图片上大小为kh×kwk_h\times k_wkh​×kw​的区域的元素与卷积核每个元素相乘再相加得到的,所以输入图像上kh×kwk_h\times k_wkh​×kw​区域内每个元素数值的改变,都会影响输出点的像素值。我们将这个区域叫做输出特征图上对应点的感受野。感受野内每个元素数值的变动,都会影响输出点的数值变化。比如3×33\times33×3卷积对应的感受野大小就是3×33\times33×3,如 图10 所示。


 

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能


图10:感受野为3×3的卷积


 

而当通过两层3×33\times33×3的卷积之后,感受野的大小将会增加到5×55\times55×5,如 图11 所示。


 

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能


图11:感受野为5×5的卷积


 

因此,当增加卷积网络深度的同时,感受野将会增大,输出特征图中的一个像素点将会包含更多的图像语义信息。

多输入通道、多输出通道和批量操作

前面介绍的卷积计算过程比较简单,实际应用时,处理的问题要复杂的多。例如:对于彩色图片有RGB三个通道,需要处理多输入通道的场景。输出特征图往往也会具有多个通道,而且在神经网络的计算中常常是把一个批次的样本放在一起计算,所以卷积算子需要具有批量处理多输入和多输出通道数据的功能,下面将分别介绍这几种场景的操作方式。


  •  

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能


图12:多输入通道计算过程


 

  • 多输出通道场景

一般来说,卷积操作的输出特征图也会具有多个通道CoutC_{out}Cout​,这时我们需要设计CoutC_{out}Cout​个维度为Cin×kh×kwC_{in}\times{k_h}\times{k_w}Cin​×kh​×kw​的卷积核,卷积核数组的维度是Cout×Cin×kh×kwC_{out}\times C_{in}\times{k_h}\times{k_w}Cout​×Cin​×kh​×kw​,如 图13 所示。

  1. 对任一输出通道cout∈[0,Cout)c_{out} \in [0, C_{out})cout​∈[0,Cout​),分别使用上面描述的形状为Cin×kh×kwC_{in}\times{k_h}\times{k_w}Cin​×kh​×kw​的卷积核对输入图片做卷积。
  2. 将这CoutC_{out}Cout​个形状为Hout×WoutH_{out}\times{W_{out}}Hout​×Wout​的二维数组拼接在一起,形成维度为Cout×Hout×WoutC_{out}\times{H_{out}}\times{W_{out}}Cout​×Hout​×Wout​的三维数组。

说明:

通常将卷积核的输出通道数叫做卷积核的个数。


计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能


图13:多输出通道计算过程


 

  • 批量操作

在卷积神经网络的计算中,通常将多个样本放在一起形成一个mini-batch进行批量操作,即输入数据的维度是N×Cin×Hin×WinN\times{C_{in}}\times{H_{in}}\times{W_{in}}N×Cin​×Hin​×Win​。由于会对每张图片使用同样的卷积核进行卷积操作,卷积核的维度与上面多输出通道的情况一样,仍然是Cout×Cin×kh×kwC_{out}\times C_{in}\times{k_h}\times{k_w}Cout​×Cin​×kh​×kw​,输出特征图的维度是N×Cout×Hout×WoutN\times{C_{out}}\times{H_{out}}\times{W_{out}}N×Cout​×Hout​×Wout​,如 图14 所示。


 

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能


图14:批量操作

卷积算子应用举例

下面介绍卷积算子在图片中应用的三个案例,并观察其计算结果。

案例1——简单的黑白边界检测

下面是使用Conv2D算子完成一个图像边界检测的任务。图像左边为光亮部分,右边为黑暗部分,需要检测出光亮跟黑暗的分界处。

设置宽度方向的卷积核为[1,0,−1][1, 0, -1][1,0,−1],此卷积核会将宽度方向间隔为1的两个像素点的数值相减。当卷积核在图片上滑动时,如果它所覆盖的像素点位于亮度相同的区域,则左右间隔为1的两个像素点数值的差为0。只有当卷积核覆盖的像素点有的处于光亮区域,有的处在黑暗区域时,左右间隔为1的两个点像素值的差才不为0。将此卷积核作用到图片上,输出特征图上只有对应黑白分界线的地方像素值才不为0。具体代码如下所示,结果输出在下方的图案中。

import matplotlib.pyplot as plt
import numpy as np
import paddle
from paddle.nn import Conv2D
from paddle.nn.initializer import Assign
%matplotlib inline

# 创建初始化权重参数w
w = np.array([1, 0, -1], dtype='float32')
# 将权重参数调整成维度为[cout, cin, kh, kw]的四维张量
w = w.reshape([1, 1, 1, 3])
# 创建卷积算子,设置输出通道数,卷积核大小,和初始化权重参数
# kernel_size = [1, 3]表示kh = 1, kw=3
# 创建卷积算子的时候,通过参数属性weight_attr指定参数初始化方式
# 这里的初始化方式时,从numpy.ndarray初始化卷积参数
conv = Conv2D(in_channels=1, out_channels=1, kernel_size=[1, 3],
       weight_attr=paddle.ParamAttr(
          initializer=Assign(value=w)))

# 创建输入图片,图片左边的像素点取值为1,右边的像素点取值为0
img = np.ones([50,50], dtype='float32')
img[:, 30:] = 0.
# 将图片形状调整为[N, C, H, W]的形式
x = img.reshape([1,1,50,50])
# 将numpy.ndarray转化成paddle中的tensor
x = paddle.to_tensor(x)
# 使用卷积算子作用在输入图片上
y = conv(x)
# 将输出tensor转化为numpy.ndarray
out = y.numpy()
f = plt.subplot(121)
f.set_title('input image', fontsize=15)
plt.imshow(img, cmap='gray')
f = plt.subplot(122)
f.set_title('output featuremap', fontsize=15)
# 卷积算子Conv2D输出数据形状为[N, C, H, W]形式
# 此处N, C=1,输出数据形状为[1, 1, H, W],是4维数组
# 但是画图函数plt.imshow画灰度图时,只接受2维数组
# 通过numpy.squeeze函数将大小为1的维度消除
plt.imshow(out.squeeze(), cmap='gray')
plt.show()
# 查看卷积层的权重参数名字和数值
print(conv.weight)
# 参看卷积层的偏置参数名字和数值
print(conv.bias)



案例2——图像中物体边缘检测

上面展示的是一个人为构造出来的简单图片,使用卷积网络检测图片明暗分界处的示例。对于真实的图片,也可以使用合适的卷积核(3*3卷积核的中间值是8,周围一圈的值是8个-1)对其进行操作,用来检测物体的外形轮廓,观察输出特征图跟原图之间的对应关系,如下代码所示:

import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import paddle
from paddle.nn import Conv2D
from paddle.nn.initializer import Assign
img = Image.open('./work/images/section1/000000098520.jpg')

# 设置卷积核参数
w = np.array([[-1,-1,-1], [-1,8,-1], [-1,-1,-1]], dtype='float32')/8
w = w.reshape([1, 1, 3, 3])
# 由于输入通道数是3,将卷积核的形状从[1,1,3,3]调整为[1,3,3,3]
w = np.repeat(w, 3, axis=1)
# 创建卷积算子,输出通道数为1,卷积核大小为3x3,
# 并使用上面的设置好的数值作为卷积核权重的初始化参数
conv = Conv2D(in_channels=3, out_channels=1, kernel_size=[3, 3], 
            weight_attr=paddle.ParamAttr(
              initializer=Assign(value=w)))
    
# 将读入的图片转化为float32类型的numpy.ndarray
x = np.array(img).astype('float32')
# 图片读入成ndarry时,形状是[H, W, 3],
# 将通道这一维度调整到最前面
x = np.transpose(x, (2,0,1))
# 将数据形状调整为[N, C, H, W]格式
x = x.reshape(1, 3, img.height, img.width)
x = paddle.to_tensor(x)
y = conv(x)
out = y.numpy()
plt.figure(figsize=(20, 10))
f = plt.subplot(121)
f.set_title('input image', fontsize=15)
plt.imshow(img)
f = plt.subplot(122)
f.set_title('output feature map', fontsize=15)
plt.imshow(out.squeeze(), cmap='gray')
plt.show()

计算机视觉-卷积神经网络,2023 AI,计算机视觉,cnn,人工智能文章来源地址https://www.toymoban.com/news/detail-687385.html

<Figure size 1440x720 with 2 Axes>

到了这里,关于计算机视觉-卷积神经网络的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 再见卷积神经网络,使用 Transformers 创建计算机视觉模型

    本文旨在介绍 / 更新 Transformers 背后的主要思想,并介绍在计算机视觉应用中使用这些模型的最新进展。 读完这篇文章,你会知道…… 为什么 Transformers 在 NLP 任务中的表现优于 SOTA 模型。 Transformer 模型的工作原理 这是卷积模型的主要限制。 Transformers 如何克服卷积模型的限

    2024年02月02日
    浏览(45)
  • 每天五分钟计算机视觉:搭建手写字体识别的卷积神经网络

    我们学习了卷积神经网络中的卷积层和池化层,这二者都是卷积神经网络中不可缺少的元素,本例中我们将搭建一个卷积神经网络完成手写字体识别。 手写字体的图片大小是32*32*3的,它是一张 RGB 模式的图片,现在我们想识别它是从 0-9 这 10 个字中的哪一个,我们构建一个神

    2024年02月05日
    浏览(58)
  • 机器学习之计算机视觉中的深度学习:卷积神经网络介绍

    文章代码来源:《deep learning on keras》,非常好的一本书,大家如果英语好,推荐直接阅读该书,如果时间不够,可以看看此系列文章。 在这一章,我们会学习卷积神经网络,一种在计算机视觉中常用的深度学习模型,你将会学着将它们运用到分类问题中。 我们首先会介绍卷

    2024年02月04日
    浏览(66)
  • 【Pytorch】计算机视觉项目——卷积神经网络CNN模型识别图像分类

    在上一篇笔记《【Pytorch】整体工作流程代码详解(新手入门)》中介绍了Pytorch的整体工作流程,本文继续说明如何使用Pytorch搭建卷积神经网络(CNN模型)来给图像分类。 其他相关文章: 深度学习入门笔记:总结了一些神经网络的基础概念。 TensorFlow专栏:《计算机视觉入门

    2024年02月05日
    浏览(53)
  • 计算机竞赛 基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别

    🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的动物识别算法研究与实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 目前,由于计算机能力和相关理论的发展获得了重大突破,基于深度学

    2024年02月09日
    浏览(78)
  • 深度学习与计算机视觉的新技术:从卷积神经网络到Transformer

    深度学习是一种人工智能技术,它旨在模拟人类大脑中的神经网络,以解决复杂的问题。计算机视觉是人工智能的一个分支,旨在让计算机理解和解析人类视觉系统中的图像和视频。深度学习与计算机视觉的结合,使得计算机在处理图像和视频方面具有强大的能力。 在过去的

    2024年02月02日
    浏览(48)
  • 计算机视觉与深度学习-卷积神经网络-卷积&图像去噪&边缘提取-图像去噪 [北邮鲁鹏]

    计算机视觉与深度学习-04-图像去噪卷积-北邮鲁鹏老师课程笔记 噪声点,其实在视觉上看上去让人感觉很难受,直观理解就是它跟周围的像素点差异比较大,显得比较突兀,视觉看起来很不舒服,这就是噪声点。 黑丝像素和白色像素随机出现 白色像素随机出现 使用高斯卷积

    2024年02月07日
    浏览(42)
  • 深度学习基础入门篇[8]::计算机视觉与卷积神经网络、卷积模型CNN综述、池化讲解、CNN参数计算

    计算机视觉作为一门让机器学会如何去“看”的学科,具体的说,就是让机器去识别摄像机拍摄的图片或视频中的物体,检测出物体所在的位置,并对目标物体进行跟踪,从而理解并描述出图片或视频里的场景和故事,以此来模拟人脑视觉系统。因此,计算机视觉也通常被叫

    2024年02月05日
    浏览(74)
  • Keras-4-深度学习用于计算机视觉-卷积神经网络对 MNIST 数字进行分类:

    本篇学习记录主要包括:《Python深度学习》的第5章(深度学习用于计算机视觉)的第1节(卷积神经网络简介)内容。 相关知识点: 密集层 (Dense层、全连接层) 和 卷积层的区别在于: Dense层从输入特征空间中学到的是全局模式;而卷积层学到的是局部模式 (学到的是卷积核大

    2024年02月11日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包