Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片

这篇具有很好参考价值的文章主要介绍了Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、前言:

使用 YOLO_NAS_S 模型进行目标检测,并保存预测到的主体图片

安装包:

pip install super_gradients
pip install omegaconf
pip install hydra-core
pip install boto3
pip install stringcase
pip install typing-extensions
pip install rapidfuzz
pip install Cython
pip install pycocotools
pip install onnx-simplifier

二、步骤:

  1. 安装所需的库和框架。确保已经安装了 OpenCV、PyTorch 和 torchvision
  2. 下载 YOLO_NAS_S 模型的权重文件,并加载模型
  3. 进行图像预处理。对于每张输入图像,需要将其转换为模型可接受的格式,并进行归一化处理
  4. 使用模型进行目标检测,并获取预测结果
  5. 解析预测结果,并保存预测到的主体图片

三、代码:

from PIL import Image

import torch
from super_gradients.training import models

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = models.get("yolo_nas_s", pretrained_weights="coco").to(device)
out = model.predict(r"D:\Desktop\tp.png", conf=0.6)

predictions = out[0]
# 提取预测框对应的主体图像并保存
num = 1
for bbox in predictions.prediction.bboxes_xyxy:
    x1, y1, x2, y2 = bbox[:4]  # 每个预测框的坐标
    image = Image.open(r"D:\Desktop\tp.png")
    cropped_image = image.crop((x1, y1, x2, y2))  # 根据坐标裁剪图像
    output_path = f"output_{num}.jpg"
    cropped_image.save(output_path)  # 保存裁剪后的图像
    num += 1

被检测的图片:

Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片,图像处理,python,YOLO,目标检测

预测主体效果:

Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片,图像处理,python,YOLO,目标检测

Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片,图像处理,python,YOLO,目标检测

Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片,图像处理,python,YOLO,目标检测

 如果在原图的基础上查看代码如下:

from PIL import Image

import torch
from super_gradients.training import models

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = models.get("yolo_nas_s", pretrained_weights="coco").to(device)
out = model.predict(r"D:\Desktop\tp.png", conf=0.6)
out.save("save_folder_path")

结果:

Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片,图像处理,python,YOLO,目标检测文章来源地址https://www.toymoban.com/news/detail-687861.html

到了这里,关于Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包