无涯教程-分类算法 - Python实现函数

这篇具有很好参考价值的文章主要介绍了无涯教程-分类算法 - Python实现函数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

为了在Python中实现SVM,无涯教程将从标准库导入开始,如下所示-

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import seaborn as sns; sns.set()

接下来,从sklearn.dataset.sample_generator创建具有线性可分离数据的样本数据集,以使用SVM进行分类-

from sklearn.datasets.samples_generator import make_blobs
X, y=make_blobs(n_samples=100, centers=2, random_state=0, cluster_std=0.50)
plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=summer);

以下是生成具有100个样本和2个聚类的样本数据集后的输出-

知道SVM支持判别分类。它通过在二维的情况下简单地找到一条线,在多维的情况下通过歧管来简单地将类彼此划分。它在上述数据集上实现如下-

xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c = y, s = 50, cmap = summer)
plt.plot([0.6], [2.1], x, color = black, markeredgewidth = 4, markersize = 12)
for m, b in [(1, 0.65), (0.5, 1.6), (-0.2, 2.9)]:
plt.plot(xfit, m * xfit + b, -k)
plt.xlim(-1, 3.5);

输出如下-

从上面的输出中可以看到,有三种不同的分隔符可以完美地区分以上示例。

正如讨论的那样,SVM的主要目标是将数据集划分为类,以找到最大的边际超平面(MMH),而不是在类之间绘制零线,可以在每条线周围画出一定宽度的边界,直到最近的点。它可以做到如下-

xfit = np.linspace(-1, 3.5)
plt.scatter(X[:, 0], X[:, 1], c = y, s = 50, cmap = summer)

for m, b, d in [(1, 0.65, 0.33), (0.5, 1.6, 0.55), (-0.2, 2.9, 0.2)]:
   yfit = m * xfit + b
   plt.plot(xfit, yfit, -k)
   plt.fill_between(xfit, yfit - d, yfit + d, edgecolor=none,
   color = #AAAAAA, alpha = 0.4)
plt.xlim(-1, 3.5);

从上面的输出图像中,无涯教程可以轻松地观察到判别式分类器中的"边距", SVM将选择使边距最大化的线。

接下来,将使用Scikit-Learn的支持向量分类器在此数据上训练SVM模型。在这里,使用线性内核来拟合SVM,如下所示:

from sklearn.svm import SVC # "Support vector classifier"
model = SVC(kernel = linear, C = 1E10)
model.fit(X, y)

输出如下-

SVC(C=10000000000.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=ovr, degree=3, gamma=auto_deprecated,
kernel=linear, max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)

现在,为了更好地理解,以下内容将绘制2D SVC的决策函数-

def decision_function(model, ax = None, plot_support = True):
   if ax is None:
      ax = plt.gca()
   xlim = ax.get_xlim()
   ylim = ax.get_ylim()

为了判断模型,需要创建网格,如下所示:

x = np.linspace(xlim[0], xlim[1], 30)
y = np.linspace(ylim[0], ylim[1], 30)
Y, X = np.meshgrid(y, x)
xy = np.vstack([X.ravel(), Y.ravel()]).T
P = model.decision_function(xy).reshape(X.shape)

接下来,需要绘制决策边界和边际,如下所示:

ax.contour(X, Y, P, colors=k, levels=[-1, 0, 1], alpha=0.5, linestyles=[--, -, --])

现在,类似地绘制支持向量,如下所示:

if plot_support:
   ax.scatter(model.support_vectors_[:, 0],
   model.support_vectors_[:, 1], s=300, linewidth=1, facecolors=none);
ax.set_xlim(xlim)
ax.set_ylim(ylim)

现在,使用此功能来拟合无涯教程的模型,如下所示:

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=summer)
decision_function(model);

无涯教程可以从上面的输出中观察到SVM分类器适合数据的边距,即虚线和支持向量,该适合度的关键元素与虚线接触。这些支持向量点存储在分类器的 support_vectors _属性中,如下所示-

model.support_vectors_

输出如下-

array([[0.5323772 , 3.31338909], [2.11114739, 3.57660449], [1.46870582, 1.86947425]])

分类算法 中的 Python实现函数 - 无涯教程网无涯教程网提供为了在Python中实现SVM,无涯教程将从标准库导入开始,如下所示- import numpy as np...https://www.learnfk.com/python-machine-learning/machine-learning-with-python-implementing-svm-in-python.html文章来源地址https://www.toymoban.com/news/detail-687891.html

到了这里,关于无涯教程-分类算法 - Python实现函数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 无涯教程-分类算法 - 朴素贝叶斯

    朴素贝叶斯算法是一种基于应用贝叶斯定理的分类技术,其中强烈假设所有预测变量彼​​此独立。简而言之,假设是某个类中某个要素的存在独立于同一类中其他任何要素的存在。 在贝叶斯分类中,主要的兴趣是找到后验概率,即给定某些观察到的特征的标签的概率。借助

    2024年02月11日
    浏览(56)
  • 无涯教程-Lua - 函数声明

    函数是一起执行任务的一组语句,您可以将代码分成单独的函数。 Lua语言提供了程序可以调用的许多内置方法。如方法 print() 打印在控制台中作为输入传递的参数。 Lua编程语言中方法定义的一般形式如下- Lua编程语言中的方法定义由方法标头和方法主体组成。这是方法的所有

    2024年02月14日
    浏览(39)
  • 无涯教程-Perl - sub函数

    此函数定义一个新的子例程。上面显示的参数遵循以下规则- NAME是子例程的名称。可以在有或没有原型规范的情况下预先声明命名的子例程(没有关联的代码块)。 匿名子例程必须具有定义。 PROTO定义了函数的原型,调用该函数以验证提供的参数时将使用该原型。 ATTRS为解析器定

    2024年02月12日
    浏览(48)
  • 无涯教程-Perl - getservbyport函数

    此功能转换协议PROTO的服务编号PORT,在标量context中返回服务名称,并在列表context中返回名称和相关信息- ($name,$aliases,$port_number,$protocol_name) 该调用基于/etc/services文件返回这些值。 以下是此函数的简单语法- 此函数在错误时返回undef,否则在标量context中返回服务编号,在错误时返回

    2024年02月13日
    浏览(46)
  • 无涯教程-Android - Spinner函数

    Spinner允许您从下拉菜单中选择一个项目 例如。使用Gmail应用程序时,将显示如下所示的下拉菜单,您需要从下拉菜单中选择一个项目。 本示例演示计算机的类别,您需要从类别中选择一个类别。 以下是修改后的主要Activity文件src/com.example.spinner/AndroidSpinnerExampleActivity.java的内容。

    2024年02月10日
    浏览(46)
  • 无涯教程-Perl - seekdir函数

    此功能将DIRHANDLE中的当前位置设置为POS。 POS的值必须是Telldir先前返回的值。 seekdir()函数类似于Unix seekdir()系统调用。 以下是此函数的简单语法- 如果失败,此函数返回0,如果成功,则返回1。 以下是显示其基本用法的示例代码,在/tmp内创建一个目录testdir- 执行上述代码后,将产生

    2024年02月13日
    浏览(33)
  • 无涯教程-Perl - bless函数

    此函数告诉REF引用的实体,它现在是CLASSNAME包中的对象,如果省略CLASSNAME,则为当前包中的对象。建议使用bless的两个参数形式。 以下是此函数的简单语法- 该函数返回对祝福到CLASSNAME中的对象的引用。 以下是显示其基本用法的示例代码,通过祝福对包类的引用来创建对象引用-

    2024年02月13日
    浏览(41)
  • 无涯教程-Perl - warn函数

    此函数将LIST的值打印到STDERR。基本上与die函数相同,除了不对出口进行任何调用并且在eval语句内不引发异常。这对于引发错误而不导致脚本过早终止很有用。 如果变量$@包含一个值(来自先前的eval调用),并且LIST为空,则$@的值将以。t.caught打印。附加到末尾。如果$@和LIST都为空

    2024年02月11日
    浏览(41)
  • 无涯教程-JavaScript - TIME函数

    TIME函数返回特定时间的十进制数。如果在输入功能之前单元格格式为\\\"常规\\\",则输出格式为日期。 TIME返回的十进制数是一个介于0(零)到0.99988426之间的值,代表从0:00:00(12:00:00 AM)到23:59:59(11:59:59 P.M.)的时间。 Argument 描述 Required/Optional Hour 从0(零)到32767的数字表示小时。 大于23的任

    2024年02月09日
    浏览(44)
  • 无涯教程-JavaScript - HYPGEOMDIST函数

    HYPGEOMDIST函数替代Excel 2010中的HYPGEOM.DIST函数。 该函数返回超几何分布。 HYPGEOMDIST返回给定样本数量,给定样本数量,总体成功率和总体数量的概率。 将HYPGEOMDIST用于具有有限总体的问题,其中每个观察输出都是成功或失败,并且给定大小的每个子集的选择可能性均等。 Argument 描述

    2024年02月10日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包