【GAN】pix2pix算法的数据集制作

这篇具有很好参考价值的文章主要介绍了【GAN】pix2pix算法的数据集制作。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、A、B合并代码(此代码由官方提供)

import os
import numpy as np
import cv2
import argparse

parser = argparse.ArgumentParser('create image pairs')
parser.add_argument('--fold_A', dest='fold_A', help='input directory for image A', type=str, default='../dataset/50kshoes_edges')
parser.add_argument('--fold_B', dest='fold_B', help='input directory for image B', type=str, default='../dataset/50kshoes_jpg')
parser.add_argument('--fold_AB', dest='fold_AB', help='output directory', type=str, default='../dataset/test_AB')
parser.add_argument('--num_imgs', dest='num_imgs', help='number of images', type=int, default=1000000)
parser.add_argument('--use_AB', dest='use_AB', help='if true: (0001_A, 0001_B) to (0001_AB)', action='store_true')
args = parser.parse_args()

for arg in vars(args):
    print('[%s] = ' % arg, getattr(args, arg))

splits = os.listdir(args.fold_A)

for sp in splits:
    img_fold_A = os.path.join(args.fold_A, sp)
    img_fold_B = os.path.join(args.fold_B, sp)
    img_list = os.listdir(img_fold_A)
    if args.use_AB:
        img_list = [img_path for img_path in img_list if '_A.' in img_path]

    num_imgs = min(args.num_imgs, len(img_list))
    print('split = %s, use %d/%d images' % (sp, num_imgs, len(img_list)))
    img_fold_AB = os.path.join(args.fold_AB, sp)
    if not os.path.isdir(img_fold_AB):
        os.makedirs(img_fold_AB)
    print('split = %s, number of images = %d' % (sp, num_imgs))
    for n in range(num_imgs):
        name_A = img_list[n]
        path_A = os.path.join(img_fold_A, name_A)
        if args.use_AB:
            name_B = name_A.replace('_A.', '_B.')
        else:
            name_B = name_A
        path_B = os.path.join(img_fold_B, name_B)
        if os.path.isfile(path_A) and os.path.isfile(path_B):
            name_AB = name_A
            if args.use_AB:
                name_AB = name_AB.replace('_A.', '.')  # remove _A
            path_AB = os.path.join(img_fold_AB, name_AB)
            im_A = cv2.imread(path_A, 1) # python2: cv2.CV_LOAD_IMAGE_COLOR; python3: cv2.IMREAD_COLOR
            im_B = cv2.imread(path_B, 1) # python2: cv2.CV_LOAD_IMAGE_COLOR; python3: cv2.IMREAD_COLOR
            im_AB = np.concatenate([im_A, im_B], 1)
            cv2.imwrite(path_AB, im_AB)

二、图片路径设置

以代码在pycharm中运行为例:
【GAN】pix2pix算法的数据集制作,GANs,生成对抗网络,算法,人工智能

点击上图中的“编辑配置”,如下图:
【GAN】pix2pix算法的数据集制作,GANs,生成对抗网络,算法,人工智能
编辑上图中画红线地方Parameters:
【GAN】pix2pix算法的数据集制作,GANs,生成对抗网络,算法,人工智能
【GAN】pix2pix算法的数据集制作,GANs,生成对抗网络,算法,人工智能
【GAN】pix2pix算法的数据集制作,GANs,生成对抗网络,算法,人工智能
【GAN】pix2pix算法的数据集制作,GANs,生成对抗网络,算法,人工智能【GAN】pix2pix算法的数据集制作,GANs,生成对抗网络,算法,人工智能文章来源地址https://www.toymoban.com/news/detail-688141.html

到了这里,关于【GAN】pix2pix算法的数据集制作的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • YOLO 格式数据集制作

    目录 1. YOLO简介 2.分割数据集准备 3.代码展示 整理不易,欢迎一键三连!!! YOLO(You Only Look Once)是一种流行的目标检测和图像分割模型,由华盛顿大学的 Joseph Redmon 和 Ali Farhadi 开发。YOLO 的第一个版本于 2015 年发布,并因其高速度和准确性而迅速流行起来。 YOLO不同版本发

    2024年02月05日
    浏览(37)
  • pytorch实战5——DataLoader数据集制作

    目录 1.如何自定义数据集: 咱们以花朵数据集为例: 任务1:读取txt文件中的路径和标签 任务2:通过上面字典返回数据,分别把数据和标签都存在list里 任务3:图像数据路径得完整 任务4:把上面那几个事得写在一起,整合到一个类。 任务5:数据预处理(transform)¶ 任务6:根据

    2024年02月04日
    浏览(35)
  • 《如何制作类mnist的金融数据集》——1.数据集制作思路

    1 .数据集制作思路(生成用于拟合金融趋势图像的分段线性函数)        那么如何去制作这样的一个类minist的金融趋势曲线数据集呢?        还是如上图所示,为了使类别平均分布,因此可以选取三种“buy”的曲线、三种“sell”的曲线以及三种“no”的曲线来作为新

    2024年01月16日
    浏览(42)
  • 基于arcgis的遥感深度学习数据集制作

    由于很多时候,我们在研究过程中往往需要根据实际情况使用自己的影像数据来提取目标物,如果没有合适的公开数据集的话,为了满足实际需要,我们就需要制作符合自己要求的数据集。 今天我们就根据实际情况来详细讲解如何利用arcgis,来制作属于自己的数据集。 首先

    2024年02月01日
    浏览(46)
  • 通信调制信号及时频图数据集制作(MATLAB)

    实现平台:MATLAB2022b         首先产生调制信号,包括八种数字调制类型和三种模拟调制类型: 二相相移键控 (BPSK) 四相相移键控 (QPSK) 八相相移键控 (8-PSK) 十六相正交幅值调制 (16-QAM) 六十四相正交幅值调制 (64-QAM) 四相脉冲幅值调制 (PAM4) 高斯频移键控 (GFSK) 连续相位频移

    2024年02月08日
    浏览(42)
  • 使用KITTI数据集的激光雷达数据(数据预处理+数据集制作+训练)

    目录 1.前言 2. 数据集简介 2.1采集区域 2.2采集平台 3. 激光雷达数据位置 4. 激光雷达数据标签含义 5. 数据预处理与训练 5.1配置openpcdet 5.2数据预处理 5.2.1数据集目录整理 5.2.2数据集格式转化 5.3训练 做激光雷达感知相关工作离不开数据集,激光雷达数据标注价格较高,可选的开

    2024年02月09日
    浏览(49)
  • yolov8-pose姿态估计数据集制作(一)

    最近在搞yolo-pose姿态识别算法,现成的模型已经挺好用了,但是在某些特定的场景下,还是识别不准。所以想着自己搞搞数据,查了网上相关的博客,基本思路都是先按照coco格式来标,然后再转化成yolo格式。不废话,直接说咋干。 这里推荐使用CVAT,好用,没啥说。GitHub链接

    2024年02月11日
    浏览(42)
  • 【深度学习】YOLOv5实例分割 数据集制作、模型训练以及TensorRT部署

    yolov5-seg:官方地址:https://github.com/ultralytics/yolov5/tree/v6.2 TensorRT:8.x.x 语言:C++ 系统:ubuntu18.04 前言:由于yolo仓中提供了标准coco的json文件转txt代码,因此需要将labelme的json文件转为coco json. labelme JSON 转COCO JSON 使用labelme的CreatePolygons按钮开始绘制多边形,然后保存为json格式。

    2024年02月06日
    浏览(54)
  • 【计算机图形学】【代码复现】A-SDF中的数据集制作与数据生成

    Follow A-SDF 的 Data Generation 部分: We follow (1) ANSCH to create URDF for shape2motion dataset (1-2) URDF2OBJ(本人认为是1-2之间需要进行的重要的过渡部分) (2) Manifold to create watertight meshes (3) and modified mesh_to_sdf for generating sampled points and sdf values. follow这个github: ANSCH 在 global_info.py 中,主要修改

    2024年02月08日
    浏览(53)
  • python实现视频抽帧,文件批量操作,文件批量处理(数据集制作的工具箱)

    环境准备 数据集制作 文件批量重命名 文件批量移动 将文件批量按照一定格式进行重命名 修改xml文件内容的方法 Pathlib库的常用接口 在计算机视觉项目中,文件批量操作和文件批量预处理是必不可少的步骤。它们涉及处理大量的图像文件,包括读取、处理、保存和预处理。

    2024年02月09日
    浏览(70)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包