本文是知识图谱系列相关的文章,针对《Generated Knowledge Prompting for Commonsense Reasoning》的翻译。
摘要
结合外部知识是否有利于常识推理,同时保持预训练序列模型的灵活性,这仍然是一个悬而未决的问题。为了研究这个问题,我们开发了生成知识提示,它包括从语言模型中生成知识,然后在回答问题时提供知识作为额外输入。我们的方法不需要对知识集成进行特定任务的监督,也不需要访问结构化的知识库,但它提高了大规模、最先进的模型在四个常识推理任务上的性能,在数值常识(NumerSense)、一般常识(CommonsenseQA 2.0)和科学常识(QASC)基准上实现了最先进的结果。生成的知识提示突出了大规模语言模型作为外部知识的灵活来源,以改进常识推理。我们的代码可在github.com/liujch1998/GKP上获得。文章来源:https://www.toymoban.com/news/detail-688609.html
1 引言
2 生成知识提示
3 实验设置
4 实验结果
5 相关工作
6 结论
我们介绍了生成知识提示,这是一种从语言模型中引出和整合知识的简单方法,可以提高常识推理任务的性能。特别是,我们通过提示一个语言模型来生成知识陈述,该模型具有特定任务的、人性化的、小样本的问题知识对演示。我们表明,只需在推理时插入知识,就可以对知识进行集成,而无需对知识集成模型进行微调。我们的方法在多个数据集上显示了有效性,在三个常识性推理任务上设置了新的技术状态,并在各种设置下工作。该方法的成功突出了语言模型作为常识推理的灵活、高质量知识的来源。文章来源地址https://www.toymoban.com/news/detail-688609.html
到了这里,关于Generated Knowledge Prompting for Commonsense Reasoning的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!