Elasticsearch 7.6 - API高阶操作篇

这篇具有很好参考价值的文章主要介绍了Elasticsearch 7.6 - API高阶操作篇。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分片和副本

只会CURD的boy可能对es的分片和副本概念都很模糊,更别提要怎么对一个索引设置一个合适的分片和副本大小了

分片:你可以认为是一个存储数据库,有几个分片就有几个库,本质上是将数据分片存储,达到更好的性能和容灾效果

副本:你可以认为是分片的从库,用来同步主分片的数据,平时不接受写的请求,但可以接受读的请求

怎么设置这两者的数量呢?假设ES集群有三个节点,那么分片数设置为3,副本设置为2

为什么这么设置?

首先ES是一个内存怪兽,性能全靠内存,一个分片的数据能全放内存里面这是性能最高的,所以一个节点最好只放一个分片,为什么要副本分片,因为节点有可能宕机,如果没有副本一旦宕机就失去了该主分片的数据读写能力了,有了副本,主分片挂了,副本还能升级为主,对外提供服务,像下面这个图一样,无论哪个节点宕机都不会造成太大的影响,至于数据丢失等问题不在本文讨论范围内

如下图所示:

Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

怎么设置呢?在创建索引的时候就可以设置了

PUT http://{{es_ip}}:{{es_port}}/xxxx(索引名称)
{
    "settings":{
        "index": {
            "number_of_shards": "1",  // 主分片数
            "number_of_replicas": "1" // 每个分片的副本数
        }
    }
}

索引别名

别名是干嘛的?顾名思义就是可以替代索引的名称做一些操作,举个例子:

索引的设置和mapping一旦创建好后,是不能被修改的,但是后期扩容、字段类型变更怎么办?只能重新创建一个索引然后把旧的索引数据迁移过来吧,这要是停机迁移,那用户不得裂开?

这时候别名的好处就体现出来了,别名就等于是索引的一层代理,像上面那个场景我只需要改一下别名的指向就搞定了,多说无用,直接实操

注意:一个索引可以用多个别名,一个别名也可以赋给多个索引

添加别名

三个添加方式,唯一需要注意的就是is_write_index,这是干嘛的?

想想别名可以同时赋予多个索引,条件查询的时候好说,但插入的时候呢?我要是用别名用来插入,我咋知道要写入哪个索引呢?这个用处就是这个标识写入哪个,要是别名下只有一个索引的话,则不需要指定,默认写入,就好比一个没有负载均衡的代理

# 创建索引时直接添加别名 如下:我为alias_test2 添加了一个alias_test别名
PUT http://{{es_ip}}:{{es_port}}/alias_test2(索引名称)
"aliases": {
    "alias_test": {}
}

# 创建索引后,为索引添加别名
// 1. 先创建索引
PUT http://{{es_ip}}:{{es_port}}/alias_test1 // 先创建索引
// 2.后为这个索引添加一个别名
PUT http://{{es_ip}}:{{es_port}}/alias_test1(索引名称)/_alias(别名命令)/alias_test(别名名称)

# 使用别名命令 批量添加
POST http://{{es_ip}}:{{es_port}}/_aliases(别名命令)
{
    "actions": [
    {
      "add": {
        "index": "alias_test2",  // 索引
        "alias": "data_alias",  // 别名
        "is_write_index":true,   // 可写,代表用data_alias别名写入的时候,写入这个alias_test2索引
        "filter":{              // 可以控制只访问这个索引的部分数据,比如这里就是只能访问id>10的数据
            "range":{
                "id":{
                    "gte":10   
                }
            }
        }
      }
    }
  ]
}

查询所有别名

GET http://{{es_ip}}:{{es_port}}/_alias

Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

删除别名

# 根据索引删除别名
DELETE http://{{es_ip}}:{{es_port}}/alias_test2(索引名称)/_alias/alias_test(别名名称)

# 用别名命令删除
POST http://{{es_ip}}:{{es_port}}/_aliases
{
"actions": [
    {
      "remove": {
        "index": "alias_test2",
        "alias": "alias_test"
      }
    }
  ]
}

使用别名代替索引操作

代替插入

现在我们alias_test别名下只有alias_test2索引,我们用alias_test2别名来插入个文档,方式和用索引插入一个文档是一样的,此时可以插入

Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

我们再给alias_test1索引添加alias_test别名,再插入试试,就会报错,要怎么解决呢?

  • 第一种:插入不用别名,而是用对应索引名称
  • 第二种:那就是is_write_index

Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

第一种毋庸置疑,咱们试试第二种,给test2加上:

Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

然后就可以正常插入了

Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

代替查询

查询可以说一点影响没有,直接查就好了,现在alias_test别名下有两个索引,所以用这个别名查询的时候能同时查询两个索引的数据,所以这也是别名的好处之一

Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

场景实操

怎么无缝迁移,切换索引?

首先前提条件有一个索引(old_index),有一个别名(proxy_index),代码中插入和查询的操作都是针对这个别名操作的(因为这别名下只有这一个索引)

好现在要迁移了,把这个索引数据迁移到新的,并无缝切换

  1. 创建一个新的索引(new_index)
  2. 为新的索引设置别名,并指定写入,此时写入的数据会写到新索引,查询会查询两个索引不影响
POST http://{{es_ip}}:{{es_port}}/_aliases
{
"actions": [
    {
      "add": {
        "index": "new_index",
        "alias": "proxy_index",
        "is_write_index":true
      }
    }
  ]
}
  1. 然后数据迁移,把(old_index)数据迁移到(new_index)
  2. 最后删除(old_index)

以上看似好像很合理对吧,但是有个致命的问题:指定新的别名写入后,那根据ID修改、根据ID删除咋办?

我的建议是使用_delete_by_query和_update_by_query命令来代替,尽量不要用指定ID的处理

如果实在不行,可以看看下面的讨论:

这个不能走别名呀,因为别名下新索引的数据还在迁移过程中,是找不到数据的,所以也有人的方案是把上述流程的2、3步换一下,即先转移数据,转移后再切,这样的话所有操作都针对别名就行了,但是这个我个人觉得还是有个问题,假设迁移数据完成后,设置别名前,刚好又有数据写入了或者刚迁移完的数据,又马上被更新了,这就有几率导致新老索引数据不一致了,这还需要一个数据check任务去校验,我觉得也很蛋疼,那要怎么解决呢?

我觉得可以这样:流程上述不变,根据ID修改、根据ID删除一样走别名,在没迁移的过程中这样是没问题的,在迁移的时候就有可能出现文档找不到的错误,我们在代码层面捕捉这个错误,然后再用索引去执行一次就OK了,等于就是用别名找不到的情况下用索引去找,索引切换后,老的索引名会失效?索引名称可以做成动态配置的

找不到时,报错信息如下:

Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

好了,别名的妙用我就写到这了,咱们开启下一趴!

滚动索引

哈,这玩意又是干嘛的…

咱们试想一个场景,虽然现在有了分片了,但是单个分片数据量还是很很很大,可能包含了几年的数据,但是我们平时搜索一般都是最近一年的数据,这就意味着这些老数据会一直影响我们的查询性能,而且这么大的数据量也导致我们维护啊、迁移啊诸多一遍,能不能让单个分片数据量再缩小一点呢?要是把分片比作分库,那能不能做一个类似分表的操作呢?比如 xxx_table_1、xxx_table_2这样

ε=(´ο`*)))唉,聪明的大兄弟可能想到了,切索引不就好了吗…,只要索引结构一致,那不就是分表嘛,但是什么时候切呢?以什么为标准切呢?谁去切呢?这时候就得用上滚动索引API了这个的本质呢就是可以设置一些阈值,然后在执行这个API的时候呢会判断是否达到了这个阈值,如果达到了就自动帮你创建一个新的索引,后续的写入就会写到这个新的索引里面(基于别名)

网上找了个图:

Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

具体要怎么做呢?就以下几步:

  1. 创建一个新的索引并设置好别名和mapping
PUT http://{{es_ip}}:{{es_port}}/logs-1
{
    "aliases": {
        "rollover_test": {}
    },
    "mappings":{
        "properties": {
            "id":{
                "type":"long"
            },
            "name":{
                "type":"text",
                "analyzer":"ik_max_word"
            },
            "remark":{
                "type":"text",
                "analyzer":"ik_max_word"
            }
        }
    }
}

  1. 插入几条数据先
POST http://{{es_ip}}:{{es_port}}/rollover_test/_bulk
{"index": {"_id": 1}} 
{"id":1,"name":"滚动测试1","remark":"asdfasdgas爱"}
{"index": {"_id": 2}} 
{"id":2,"name":"滚动测试2","remark":"asdfasdgas爱"}
{"index": {"_id": 3}} 
{"id":3,"name":"滚动测试3","remark":"asdfasdgas爱"}
{"index": {"_id": 4}} 
{"id":4,"name":"滚动测试4","remark":"asdfasdgas爱"}


  1. 执行滚动API
# 试运行,实际不会执行,可以查看执行后的结果
POST http://{{es_ip}}:{{es_port}}/rollover_test(上面索引的别名)/_rollover?dry_run

# 直接执行
POST http://{{es_ip}}:{{es_port}}/rollover_test(上面索引的别名)/_rollover
{
  "conditions": {
    "max_age":   "7d", // 天数:超过7天,滚动一次(创建新索引)
    "max_docs":  2,    // 文档数:超过2个文档就滚动一次
    "max_size":  "5gb" // 索引大小:超过5G滚动一次
  }
}
返回结果:
{
    "acknowledged": true,
    "shards_acknowledged": true,
    "old_index": "logs-1",
    "new_index": "logs-000002",  // 这个就是新的索引名称,新的索引是没有数据的,它并不会转移数据
    "rolled_over": true,
    "dry_run": false,
    "conditions": {
        "[max_size: 5gb]": false,
        "[max_docs: 2]": true,      // 我们刚刚插入了4条,满足了这个条件,所以为true
        "[max_age: 7d]": false
    }
}

  1. 查看效果

    你会发现别名已经转移到了新的索引上面,老的索引已经没有别名了

    Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

    当我们查看新索引的结构时,你会发现结构居然全是默认的,和老的索引都不一样,而且别名也都迁移过来了,就代表用别名查询不到之前老索引的数据了呀?这不得出大事?要咋办呢?不合理,绝对不合理

    Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

要解决这个问题,其实也很简单,就是还需要一个索引,同时在执行滚动API的时候,同时给新索引添加上去,包括结构啥的,就像:

{
  "conditions": {
    "max_age":   "7d", // 天数:超过7天,滚动一次(创建新索引)
    "max_docs":  2,    // 文档数:超过2个文档就滚动一次
    "max_size":  "5gb" // 索引大小:超过5G滚动一次
  },
  ........   // 这里添加新索引的配置
}

但是这样也不是非常的合适,能不能自动的就给新增的索引加上配置呢?每次这样多麻烦啊,索引结构一一变,这里也得变。

所以呀,这时候就需要聊聊索引模板这个东西了

**注意:**这种方式几乎全在操作别名,需要注意用ID操作的问题!!!!

索引模板

创建索引模板

PUT http://{{es_ip}}:{{es_port}}/_template(模板命令)/template_1(模板名称)
JSON传参:
{
    // 索引名称匹配,这里代表匹配所有logs-开头的索引
    // 意味了创建这样名称的索引的时候,会自动加上下面的配置
  "index_patterns":[    
    "logs-*"
  ],
  "settings":{                  // 索引的设置
    "number_of_shards":1
  },
  "aliases" : {                 // 别名
        "log_all" : {}
    },
  "mappings": {                 // 映射结构
    "_source": {
      "enabled": false
    },
    "properties": {
        "id":{
            "type":"long"
        },
        "name":{
            "type":"text",
            "analyzer":"ik_max_word"
        },
        "remark":{
            "type":"text",
            "analyzer":"ik_max_word"
        }
    }
  },
  // 优先级,假设一个索引同时匹配了多个模板,则会按照这个顺序依次加载
  // 越大,优先级越高,高的配置会覆盖低的
  "order":0                  
}

咱们新增这个一个模板,再滚动一次上面的看看结果,还是先插入4条数据,然后滚动

# 插入数据
POST http://{{es_ip}}:{{es_port}}/rollover_test/_bulk
{"index": {"_id": 1}} 
{"id":1,"name":"滚动测试1","remark":"asdfasdgas爱"}
{"index": {"_id": 2}} 
{"id":2,"name":"滚动测试2","remark":"asdfasdgas爱"}
{"index": {"_id": 3}} 
{"id":3,"name":"滚动测试3","remark":"asdfasdgas爱"}
{"index": {"_id": 4}} 
{"id":4,"name":"滚动测试4","remark":"asdfasdgas爱"}

# 滚动 (刚插入数据,会有一段时间才会刷新,这个立马执行这个滚动不一定成功)
POST http://{{es_ip}}:{{es_port}}/rollover_test/_rollover

这时候咱们再来看看这个新的索引logs-000003结构,可以看到结构啊,别名啊都有了,以后每次滚动log_all这个索引都会给新的索引,这样咱们用这个别名查询就可以查询所有的索引啦!

Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

查看模板

# 一次性查询所有templat开头的模板
GET http://{{es_ip}}:{{es_port}}/_template(模板命令)/templat*(模板名称匹配)

# 只查询一个模板
GET http://{{es_ip}}:{{es_port}}/_template(模板命令)/template_1(模板名称)

删除模板

# 一次性删除所有templat开头的模板
DELETE http://{{es_ip}}:{{es_port}}/_template(模板命令)/templat*(模板名称匹配)

# 只删除一个模板
DELETE http://{{es_ip}}:{{es_port}}/_template(模板命令)/template_1(模板名称)

场景实操一把

大家可能经常看到一些索引为日期命名,每天更新,就类似以下这种:

xxx-2023-01-01-000001
xxx-2023-01-01-000002
xxx-2023-01-02-000003

流程如下:

  1. 创建日志索引,索引名格式有点区别了这里用这个<logs-{now/d}-000001>,需要编码一次,可以用这个网站:编码网站
PUT http://{{es_ip}}:{{es_port}}/%3Clogs-%7Bnow%2Fd%7D-000001%3E(索引名称需要编码)
JSON传参:
{
    "aliases": {
        "logs_rollover": {},              // 这个是用来滚动的别名
        "logs_query":{}                   // 这个是用来给所有滚动的日志索引添加的别名,便于搜索所有
    },
    "mappings":{
        "properties": {
            "id":{
                "type":"long"
            },
            "name":{
                "type":"text",
                "analyzer":"ik_max_word"
            },
            "remark":{
                "type":"text",
                "analyzer":"ik_max_word"
            }
        }
    }
}
  1. 添加一个模板
PUT http://{{es_ip}}:{{es_port}}/_template/template_1
JSON传参:
{
  "index_patterns":[     // 匹配所有日志索引
    "logs-*"
  ],
  "settings":{
    "number_of_shards":1
  },
  "aliases" : {
        "logs_query" : {}    // 日志全局索引别名
    },
  "mappings": {
    "_source": {
      "enabled": false
    },
    "properties": {
        "id":{
            "type":"long"
        },
        "name":{
            "type":"text",
            "analyzer":"ik_max_word"
        },
        "remark":{
            "type":"text",
            "analyzer":"ik_max_word"
        }
    }
  },
  "order":0
}
  1. 添加几条数据
POST http://{{es_ip}}:{{es_port}}/logs_rollover/_bulk
{"index": {"_id": 1}} 
{"id":1,"name":"滚动测试1","remark":"asdfasdgas爱"}
{"index": {"_id": 2}} 
{"id":2,"name":"滚动测试2","remark":"asdfasdgas爱"}
{"index": {"_id": 3}} 
{"id":3,"name":"滚动测试3","remark":"asdfasdgas爱"}
{"index": {"_id": 4}} 
{"id":4,"name":"滚动测试4","remark":"asdfasdgas爱"}


  1. 执行滚动
POST http://{{es_ip}}:{{es_port}}/logs_rollover/_rollover
{
  "conditions": {
    "max_age":   "7d", // 天数:超过7天,滚动一次(创建新索引)
    "max_docs":  2,    // 文档数:超过2个文档就滚动一次
    "max_size":  "5gb" // 索引大小:超过5G滚动一次
  }
}
  1. 查看新索引结构

    Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

  2. 查看别名

    Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

这就搞定了,你可以发现所有日志的索引名称都是非常标准、统一的格式,但这样需要注意的是插入只能用别名logs_rollover,查询只能用别名logs_query,不要用带文档ID的操作

看起来很简单是吧,但你以为这样就完了吗。。。。。。。。。想想这样还有什么缺点?

  1. 滚动需要人为操作
  2. 目前别名查询的是所有数据,但完全可以根据时间建很多个别名,如7天、一个月、季度、年,这样是不是会更高效
  3. 时间已经很久的冷数据怎么办?
  4. …等等

场景需要灵活运用…,下面提一下索引的生命周期

索引的生命周期

上述说的场景在以前可能都是定时脚本解决的,但是现在索引有了生命周期LLM管理,可以自动的帮我们做很多的事,这种偏运维、也不太好实操,就放个链接给大家简单了解一下吧

ES ILM实践

数据迁移API

如果要迁移索引的数据我是建议用这个_reindex命令,简单示例,并提供几个重要操作:

# 默认同步迁移、单任务执行
POST http://{{es_ip}}:{{es_port}}/_reindex

#  slices:并行数(最好和主分片数一致)  wait_for_completion:异步执行
POST http://{{es_ip}}:{{es_port}}/_reindex?slices=x&wait_for_completion=false
{
  "source": {
    "index": "old_index_name",    // 旧的索引名称
     "size": 5000,                // 每次迁移的文档数量,这里就是一次批量转移5000个
     "query": {                   // 条件迁移,只迁移条件匹配的数据
      "term": {
        "user": "kimchy"
      }
    }
  },
  "dest": {
    "index": "new_index_name",            // 新的索引名称
    "version_type": "internal"    // 版本类型 
  }
}


查看任务进度:

# 如果是异步执行的,会返回一个任务名称,可以根据这个名称查询任务信息
GET http://{{es_ip}}:{{es_port}}/_tasks/(任务名称)

GEO(地理)API

这个就是地理经纬度相关API,比如附近的人,某个地址附近的店,最近距离等等,很多人可能用Redis的GEO来实现,但Redis对于数据的存储量来讲可远远比不上ES

索引准备

操作和普通的其实都差不多,GEO无非就是一个特殊的字段类型,我们先创建一个索引

PUT http://{{es_ip}}:{{es_port}}/geo_test
{
    "mappings":{
        "properties": {
            "name":{
                "type":"text",
                "analyzer":"ik_max_word"
            },
            "location": {
                "type": "geo_point"  // GEO数据类型
            }
        }
    }
}

随意准备一点数据,想要更可观,可以自己去地图上捞一些点,我这里就随意了哈

http://{{es_ip}}:{{es_port}}/geo_test/_bulk
JSON 传参:
{"index": {"_id": 1}} 
{"name":"唐聪健1", "location" : { "lat" : 40.12, "lon" : -71.34 }}
{"index": {"_id": 2}} 
{"name":"唐聪健2", "location" : { "lat" : 50.12, "lon" : -60.34 }}
{"index": {"_id": 3}} 
{"name":"唐聪健3", "location" : { "lat" : 60.12, "lon" : -50.34 }}
{"index": {"_id": 4}} 
{"name":"唐聪健4", "location" : { "lat" : 70.12, "lon" : -40.34 }}
{"index": {"_id":5}} 
{"name":"唐聪健5", "location" : { "lat" : 80.12, "lon" : -30.34 }}
{"index": {"_id": 6}} 
{"name":"唐聪健6", "location" : { "lat" : 85.12, "lon" : -20.34 }}
{"index": {"_id": 7}} 
{"name":"唐聪健7", "location" : { "lat" : 35.12, "lon" : -67.34 }}
{"index": {"_id": 8}} 
{"name":"唐聪健8", "location" : { "lat" : 55.12, "lon" : -55.34 }}



矩形查询

就是查询在一个矩形的框框内,有哪些点

GET http://{{es_ip}}:{{es_port}}/geo_test/_search
{
    "query": {
        "bool" : {
            "must" : {
                "match_all" : {}
            },
            "filter" : {
                "geo_bounding_box" : {          // 矩形的命令
                    "location" : {              // 要查询的字段,一定要是GEO类型
                        "top_left" : {          // 矩形左上角的点经纬度
                            "lat" : 80.73,
                            "lon" : -30.1
                        },
                        "bottom_right" : {      // 矩形右下角的点经纬度
                            "lat" : 40.01,
                            "lon" : -30.12
                        }
                    }
                }
            }
        }
    }
}

圆形查询

就是查询以一个点为中心,半径多少的一个圆形内,有多少个点

GET http://{{es_ip}}:{{es_port}}/geo_test/_search
{
    "query": {
        "bool" : {
            "must" : {
                "match_all" : {}
            },
            "filter" : {
                "geo_distance" : {
                    "distance" : "1000km", // 半径 单位:​​km​​​、​​m​​​、​​cm​​​、​​mm​​​、​​nmi​​​、​​mi​​​、​​yd​​​、​​ft​​​、​​in​​
                    "distance_type": "arc", // ​arc​​:默认的方式,这种方式计算比较精确,但是比较慢  ​plane​​:这种方式计算比较快,但是可能不怎么准,越靠近赤道越准
                    "location" : {        // 圆心点
                        "lat" : 40,
                        "lon" : -70
                    }
                }
            }
        }
    },
    "sort": [                
    {
      "_geo_distance": {       // 根据与下面点的的距离排序
        "location": {
          "lat" : 40,
            "lon" : -70
        },
        "order": "desc",
        "unit": "m",          // 单位米
        "distance_type": "arc"
      }
    }
  ]
}

多边形查询

GET http://{{es_ip}}:{{es_port}}/geo_test/_search
{
    "query": {
        "bool" : {
            "must" : {
                "match_all" : {}
            },
            "filter" : {
                "geo_polygon" : {                        // 多边形命令
                    "location" : {
                        "points" : [                     // 点集合
                            {"lat" : 40, "lon" : -70},   // 多边形点位经纬度
                            {"lat" : 60, "lon" : -60},
                            {"lat" : 20, "lon" : -20}
                        ]
                    }
                }
            }
        }
    }
}

自定义分词器

之前咱们环境搭建的时候搞了一个IK分词器是吧,但是你会发现百度输入个拼音就出来东西了,想达到这个效果咱们还得去搞个拼音分词器,可以GitHub上面下一个:地址传送门

Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

像之前安装ik一样,搞进去压缩,重启es就ok了,看看效果

GET http://{{es_ip}}:{{es_port}}/_analyze

{ 
"text": "分词测试", 
"analyzer": "pinyin" 
}

Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

好像还不错?确实用拼音分词了,但是感觉差点意思啊,这都变成一个一个的拼音啊,我们应该是要分词的拼音,然后中文呢?难不成为了拼音舍弃中文分词?又或者要搞两个字段,一个中文分词,一个拼音分词?

肯定不合理!所以我们要自定义分词!!集两者为一体

想要自定义分词,首先就得了解分词器的一丢丢原理了,有三个重要的部分:

部分 含义
Character Filter 在分词之前对原始文本进行处理,例如去除 HTML 标签,或替换特定字符。
Tokenizer 定义如何将文本切分为词条或 token。例如,使用空格或标点符号将文本切分为单词
Token Filter 对 Tokenizer 输出的词条进行进一步的处理,例如转为小写、去除停用词或添加同义词。

为了更好的理解,这里贴上一张网图:

Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

看了这个图,是不是就很清晰了,要达到我们的效果,只需要Tokenizer部分用IK分词器,Token Filter部分用拼音分词器是不是就搞定了,下面咱们实操一把:

# 创建自定义分词的索引
PUT http://{{es_ip}}:{{es_port}}/my_analyzer_test
{
    "settings": {
        "analysis": {
            "analyzer": {
                "my_analyzer": {                // 自定义的分词名称
                    "tokenizer": "ik_smart",    // 这个就是 Tokenizer
                    "filter": [
                        "py_filter"             // 过滤器
                    ]
                }
            },
            "filter": {
                "py_filter": {
                    "type": "pinyin",
                    "keep_full_pinyin": false,   // 拼音默认是一个字一个字的分词拼音,所以要关了
                    "keep_joined_full_pinyin": true,  // 按照词语拼音
                    "remove_duplicated_term": true,   // 删除重复的拼音
                    "keep_original":true  // 保留原始的输入,也就是保留汉字的分词

                }
            }
        }
    },
    "mappings": {
        "properties": {
            "name": {
                "type": "text",
                "analyzer": "my_analyzer"  // mapping这里的分词就要选择我们自定义的分词名称
            }
        }
    }
}

分词测试:

# 注意自定义分词是只属于索引的,索引这里分词命令前面要加上索引的名称
GET http://{{es_ip}}:{{es_port}}/my_analyzer_test/_analyze

{ 
"text": "分词测试", 
"analyzer": "my_analyzer"  // 自定义分词的名称 
}
大功告成!!

Elasticsearch 7.6 - API高阶操作篇,elasticsearch,elasticsearch,es,API

总结

本文讲了很多关于ES的进阶用法,让你不再局限于CURD,但是灵活度也就更高了,实际中什么场景用什么样的方案这就得你自己来把控了,本来还想写一些关于这些高阶API的Java应用层面的使用,最后想想还是算了,客户端得自己去摸索摸索才会更深刻;

好了,到了这我相信你比CURD boy应该更上一层楼了,但是你以为这就完了?才开始呢,少年!

这些东西都是ES整体中的冰山一角,更多的东西需要你自己去摸索、去看文档了,相信有了这些作为基础,文档你也基本能搞懂了,下面贴一些文档地址:

  • 官方文档(我推荐是看这个,下面参考用)
  • ES客户端文档
  • ES API中文文档(这个我不知道是什么版本的ES,参考就好)
  • 一个ES 中文教程网站(我同样不知道什么版本的,参考就好)

后续会分享一些关于ES的原理以及必须要知道的知识点,理论加上实践,你才能得到升华!文章来源地址https://www.toymoban.com/news/detail-688719.html

到了这里,关于Elasticsearch 7.6 - API高阶操作篇的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Java SpringBoot API 实现ES(Elasticsearch)搜索引擎的一系列操作(超详细)(模拟数据库操作)

    小编使用的是elasticsearch-7.3.2 基础说明: 启动:进入elasticsearch-7.3.2/bin目录,双击elasticsearch.bat进行启动,当出现一下界面说明,启动成功。也可以访问http://localhost:9200/ 启动ES管理:进入elasticsearch-head-master文件夹,然后进入cmd命令界面,输入npm run start 即可启动。访问http

    2024年02月04日
    浏览(57)
  • 【Elasticsearch学习笔记五】es常用的JAVA API、es整合SpringBoot项目中使用、利用JAVA代码操作es、RestHighLevelClient客户端对象

    目录 一、Maven项目集成Easticsearch 1)客户端对象 2)索引操作 3)文档操作 4)高级查询 二、springboot项目集成Spring Data操作Elasticsearch 1)pom文件 2)yaml 3)数据实体类 4)配置类 5)Dao数据访问对象 6)索引操作 7)文档操作 8)文档搜索 三、springboot项目集成bboss操作elasticsearch

    2023年04月09日
    浏览(51)
  • elasticsearch(es)高级查询api

    在以上示例代码中,定义了一个返回类型为ResponseEntityMapString, Object的/search POST映射方法,并使用MapString, Object对象来存储异步操作的结果。然后,创建了一个ActionListener的匿名实现对象,并使用client.searchAsync()方法以异步方式执行搜索操作。在onResponse()方法中,将搜索结果存储

    2023年04月09日
    浏览(45)
  • es Elasticsearch 六 java api spirngboot 集成es

    目录 Java restApi Springboot 集成es 新增-同步 新增-异步 增删改查流程 _bulk 批量操作 新增-同步 新增-异步 增删改查流程 创建请求、2.执行、3.查看返回结果     _bulk 批量操作 ok 持续更新

    2024年02月10日
    浏览(56)
  • 什么是ES(Elasticsearch)?详解+操作

    elastic:富有弹性的 search:搜索 此软件不再是SpringColud提供的,他也不针对微服务的项目开发 Elasticsearch和Redis/mysqly一样,不仅服务于java开发,其他语言也可以使用 它的功能类似于数据库,能高效的从大量数据中搜索匹配指定的内容 数据保存在硬盘中 Es的底层: 使用了一套名

    2024年02月06日
    浏览(35)
  • Elasticsearch(四)——ES基本操作

    一、Rest风格说明( 非常重要 ) Rest风格一种软件架构风格,而不是标准,只是提供了一组设计原则和约束条件。 它主要用于客户端和服务器交互类的软件。基于这个风格设计的软件可以更简洁,更有层次,更易于实现缓存等机制。 基于Rest命令说明 method url地址 描述 PUT localh

    2024年02月02日
    浏览(39)
  • ElasticSearch基本api操作

    本文章下列所用es本意都为Elaticsearch Elaticsearch ,简称为es, es是一 个开源的高扩展的分布式全文检索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好, 可以扩展到上百台服务器,处理PB级别(大数据时代)的数据。es也使用Java开发并使用Lucene作为其核心来实现所有索弓和搜

    2024年02月05日
    浏览(45)
  • elasticsearch(三)-- 理解ES的索引操作

    上一章我们主要学习了es的几个客户端,那么我们后面也主要通过kibana客户端、HighLevelClient高级客户端这两个来学习es. 这一章的学习我们主要是学习一些Elasticsearch的基础操作,主要是深入一些概念,比如索引的具体操作,映射的相关语法,对数据类型,文档的操作。那么主要

    2024年02月04日
    浏览(48)
  • elasticsearch查询操作(API方式)

    说明:elasticsearch查询操作除了使用DSL语句的方式(参考:elasticsearch查询操作(语句方式)),也可以使用API的方式。 使用前需先导入依赖 创建一个测试类,查询操作代码都写在测试类里面,首先先建立RestHighLevelClient的连接 (1)全部查询; 查询student索引库的所有文档;

    2024年02月14日
    浏览(39)
  • java Api操作Elasticsearch

    本次使用 elasticsearch 版本为7.17.0, 建议使用 7.X 版本 ,8.1.2版本会遇到一些 Springboot(本人使用版本2.6.6) 版本不兼容的问题。此文章会列举一个例子。 我们在测试类中先创建一个客户端,用来向 ES 发送请求 测试代码如下: 控制台输出信息如下: 此处会遇到坑: 运行之后

    2023年04月09日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包