Gazebo仿真环境下的强化学习实现

这篇具有很好参考价值的文章主要介绍了Gazebo仿真环境下的强化学习实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Gazebo仿真环境下的强化学习实现,科研,机器人,Gazebo,RL,强化学习,机器学习,仿真

Gazebo仿真环境下的强化学习实现

主体源码参照《Goal-Driven Autonomous Exploration Through Deep Reinforcement Learning》

1. 源码拉取

git clone https://github.com/reiniscimurs/DRL-robot-navigation

笔者采用其强化学习方法,但是对于仿真环境以及机器人模型仍然用自己的包,源码中采用了与论文强相关的用法

2. 强化学习实现

2.1 环境

源码:

class GazeboEnv:
    """Superclass for all Gazebo environments."""

    def __init__(self, launchfile, environment_dim):
        self.environment_dim = environment_dim
        self.odom_x = 0
        self.odom_y = 0

        self.goal_x = 1
        self.goal_y = 0.0

        self.upper = 5.0
        self.lower = -5.0
        self.velodyne_data = np.ones(self.environment_dim) * 10
        self.last_odom = None

        self.set_self_state = ModelState()
        self.set_self_state.model_name = "r1"
        self.set_self_state.pose.position.x = 0.0
        self.set_self_state.pose.position.y = 0.0
        self.set_self_state.pose.position.z = 0.0
        self.set_self_state.pose.orientation.x = 0.0
        self.set_self_state.pose.orientation.y = 0.0
        self.set_self_state.pose.orientation.z = 0.0
        self.set_self_state.pose.orientation.w = 1.0

        self.gaps = [[-np.pi / 2 - 0.03, -np.pi / 2 + np.pi / self.environment_dim]]
        for m in range(self.environment_dim - 1):
            self.gaps.append(
                [self.gaps[m][1], self.gaps[m][1] + np.pi / self.environment_dim]
            )
        self.gaps[-1][-1] += 0.03

        port = "11311"
        subprocess.Popen(["roscore", "-p", port])

        print("Roscore launched!")

        # Launch the simulation with the given launchfile name
        rospy.init_node("gym", anonymous=True)
        if launchfile.startswith("/"):
            fullpath = launchfile
        else:
            fullpath = os.path.join(os.path.dirname(__file__), "assets", launchfile)
        if not path.exists(fullpath):
            raise IOError("File " + fullpath + " does not exist")

        subprocess.Popen(["roslaunch", "-p", port, fullpath])
        print("Gazebo launched!")

        # Set up the ROS publishers and subscribers
        self.vel_pub = rospy.Publisher("/r1/cmd_vel", Twist, queue_size=1)
        self.set_state = rospy.Publisher(
            "gazebo/set_model_state", ModelState, queue_size=10
        )
        self.unpause = rospy.ServiceProxy("/gazebo/unpause_physics", Empty)
        self.pause = rospy.ServiceProxy("/gazebo/pause_physics", Empty)
        self.reset_proxy = rospy.ServiceProxy("/gazebo/reset_world", Empty)
        self.publisher = rospy.Publisher("goal_point", MarkerArray, queue_size=3)
        self.publisher2 = rospy.Publisher("linear_velocity", MarkerArray, queue_size=1)
        self.publisher3 = rospy.Publisher("angular_velocity", MarkerArray, queue_size=1)
        self.velodyne = rospy.Subscriber(
            "/velodyne_points", PointCloud2, self.velodyne_callback, queue_size=1
        )
        self.odom = rospy.Subscriber(
            "/r1/odom", Odometry, self.odom_callback, queue_size=1
        )

强化学习中环境用于产生状态输入,并通过智能体的动作产生新的状态,在类中设定了目标和里程计的私有域,代表了自己当前的目标点和位姿信息。
初始化方法中设置了若干发布者和订阅者
/gazebo/unpause_physics 用于在Gazebo仿真环境中取消暂停物理模拟。当Gazebo仿真环境处于暂停状态时,物理模拟会停止,仿真中的物体将不再移动或交互。通过调用 /gazebo/unpause_physics 服务,你可以使仿真环境恢复到正常运行状态,允许物理模拟继续进行。
/gazebo/pause_physics 是一个ROS服务,用于在Gazebo仿真环境中暂停物理模拟。通过调用 /gazebo/pause_physics 服务,你可以将仿真环境的物理模拟暂停,这将导致仿真中的物体停止运动,仿真时间暂停。
注意,在初始化方法中可以看出,roslaunch也是通过程序启动,节点一并启动(在本机有Anaconda的情况下会有麻烦)

2.2 动作空间

由发布者可以看出强化学习的策略的动作空间
linear_velocity:输出线速度
angular_velocity:输出角速度

2.3 状态空间

如图,作者的强化学习架构为
Gazebo仿真环境下的强化学习实现,科研,机器人,Gazebo,RL,强化学习,机器学习,仿真其输入空间为24维向量,其中,180度扫描的激光点进行了20等分,选取每个等分区域的最小值作为显著性代表值,剩下的4维为与目标的距离、与目标的转角差、机器人的线速度、机器人的角速度

distance = np.linalg.norm(
            [self.odom_x - self.goal_x, self.odom_y - self.goal_y]
        )
theta = beta - angle
        if theta > np.pi:
            theta = np.pi - theta
            theta = -np.pi - theta
        if theta < -np.pi:
            theta = -np.pi - theta
            theta = np.pi - theta
vel_cmd = Twist()
        vel_cmd.linear.x = action[0]
        vel_cmd.angular.z = action[1]
robot_state = [distance, theta, action[0], action[1]]
    def velodyne_callback(self, v):
        data = list(pc2.read_points(v, skip_nans=False, field_names=("x", "y", "z")))
        self.velodyne_data = np.ones(self.environment_dim) * 10
        for i in range(len(data)):
            if data[i][2] > -0.2:
                dot = data[i][0] * 1 + data[i][1] * 0
                mag1 = math.sqrt(math.pow(data[i][0], 2) + math.pow(data[i][1], 2))
                mag2 = math.sqrt(math.pow(1, 2) + math.pow(0, 2))
                beta = math.acos(dot / (mag1 * mag2)) * np.sign(data[i][1])
                dist = math.sqrt(data[i][0] ** 2 + data[i][1] ** 2 + data[i][2] ** 2)

                for j in range(len(self.gaps)):
                    if self.gaps[j][0] <= beta < self.gaps[j][1]:
                        self.velodyne_data[j] = min(self.velodyne_data[j], dist)
                        break

2.4 奖励空间

在每一步仿真后都会计算奖励,奖励的准则为到达目标加200分,碰撞-100分,再根据角速度和线速度以及显著性的最小激光点进行动态调整,引导机器人

    def step(self, action):
        ...
        reward = self.get_reward(target, collision, action, min_laser)
        return state, reward, done, target
    def get_reward(target, collision, action, min_laser):
        if target:
            return 100.0
        elif collision:
            return -100.0
        else:
            r3 = lambda x: 1 - x if x < 1 else 0.0
            return action[0] / 2 - abs(action[1]) / 2 - r3(min_laser) / 2   

2.5 TD3训练

采用Actor-Critic的方法进行训练,训练为常规的强化学习架构,本文按照读者有强化学习基础行进,重要的是输入的参数,要定义好维度问题。

import os
import time

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from numpy import inf
from torch.utils.tensorboard import SummaryWriter

from replay_buffer import ReplayBuffer
from velodyne_env import GazeboEnv


def evaluate(network, epoch, eval_episodes=10):
    avg_reward = 0.0
    col = 0
    for _ in range(eval_episodes):
        count = 0
        state = env.reset()
        done = False
        while not done and count < 501:
            action = network.get_action(np.array(state))
            a_in = [(action[0] + 1) / 2, action[1]]
            state, reward, done, _ = env.step(a_in)
            avg_reward += reward
            count += 1
            if reward < -90:
                col += 1
    avg_reward /= eval_episodes
    avg_col = col / eval_episodes
    print("..............................................")
    print(
        "Average Reward over %i Evaluation Episodes, Epoch %i: %f, %f"
        % (eval_episodes, epoch, avg_reward, avg_col)
    )
    print("..............................................")
    return avg_reward


class Actor(nn.Module):
    def __init__(self, state_dim, action_dim):
        super(Actor, self).__init__()

        self.layer_1 = nn.Linear(state_dim, 800)
        self.layer_2 = nn.Linear(800, 600)
        self.layer_3 = nn.Linear(600, action_dim)
        self.tanh = nn.Tanh()

    def forward(self, s):
        s = F.relu(self.layer_1(s))
        s = F.relu(self.layer_2(s))
        a = self.tanh(self.layer_3(s))
        return a


class Critic(nn.Module):
    def __init__(self, state_dim, action_dim):
        super(Critic, self).__init__()

        self.layer_1 = nn.Linear(state_dim, 800)
        self.layer_2_s = nn.Linear(800, 600)
        self.layer_2_a = nn.Linear(action_dim, 600)
        self.layer_3 = nn.Linear(600, 1)

        self.layer_4 = nn.Linear(state_dim, 800)
        self.layer_5_s = nn.Linear(800, 600)
        self.layer_5_a = nn.Linear(action_dim, 600)
        self.layer_6 = nn.Linear(600, 1)

    def forward(self, s, a):
        s1 = F.relu(self.layer_1(s))
        self.layer_2_s(s1)
        self.layer_2_a(a)
        s11 = torch.mm(s1, self.layer_2_s.weight.data.t())
        s12 = torch.mm(a, self.layer_2_a.weight.data.t())
        s1 = F.relu(s11 + s12 + self.layer_2_a.bias.data)
        q1 = self.layer_3(s1)

        s2 = F.relu(self.layer_4(s))
        self.layer_5_s(s2)
        self.layer_5_a(a)
        s21 = torch.mm(s2, self.layer_5_s.weight.data.t())
        s22 = torch.mm(a, self.layer_5_a.weight.data.t())
        s2 = F.relu(s21 + s22 + self.layer_5_a.bias.data)
        q2 = self.layer_6(s2)
        return q1, q2


# TD3 network
class TD3(object):
    def __init__(self, state_dim, action_dim, max_action):
        # Initialize the Actor network
        self.actor = Actor(state_dim, action_dim).to(device)
        self.actor_target = Actor(state_dim, action_dim).to(device)
        self.actor_target.load_state_dict(self.actor.state_dict())
        self.actor_optimizer = torch.optim.Adam(self.actor.parameters())

        # Initialize the Critic networks
        self.critic = Critic(state_dim, action_dim).to(device)
        self.critic_target = Critic(state_dim, action_dim).to(device)
        self.critic_target.load_state_dict(self.critic.state_dict())
        self.critic_optimizer = torch.optim.Adam(self.critic.parameters())

        self.max_action = max_action
        self.writer = SummaryWriter()
        self.iter_count = 0

    def get_action(self, state):
        # Function to get the action from the actor
        state = torch.Tensor(state.reshape(1, -1)).to(device)
        return self.actor(state).cpu().data.numpy().flatten()

    # training cycle
    def train(
        self,
        replay_buffer,
        iterations,
        batch_size=100,
        discount=1,
        tau=0.005,
        policy_noise=0.2,  # discount=0.99
        noise_clip=0.5,
        policy_freq=2,
    ):
        av_Q = 0
        max_Q = -inf
        av_loss = 0
        for it in range(iterations):
            # sample a batch from the replay buffer
            (
                batch_states,
                batch_actions,
                batch_rewards,
                batch_dones,
                batch_next_states,
            ) = replay_buffer.sample_batch(batch_size)
            state = torch.Tensor(batch_states).to(device)
            next_state = torch.Tensor(batch_next_states).to(device)
            action = torch.Tensor(batch_actions).to(device)
            reward = torch.Tensor(batch_rewards).to(device)
            done = torch.Tensor(batch_dones).to(device)

            # Obtain the estimated action from the next state by using the actor-target
            next_action = self.actor_target(next_state)

            # Add noise to the action
            noise = torch.Tensor(batch_actions).data.normal_(0, policy_noise).to(device)
            noise = noise.clamp(-noise_clip, noise_clip)
            next_action = (next_action + noise).clamp(-self.max_action, self.max_action)

            # Calculate the Q values from the critic-target network for the next state-action pair
            target_Q1, target_Q2 = self.critic_target(next_state, next_action)

            # Select the minimal Q value from the 2 calculated values
            target_Q = torch.min(target_Q1, target_Q2)
            av_Q += torch.mean(target_Q)
            max_Q = max(max_Q, torch.max(target_Q))
            # Calculate the final Q value from the target network parameters by using Bellman equation
            target_Q = reward + ((1 - done) * discount * target_Q).detach()

            # Get the Q values of the basis networks with the current parameters
            current_Q1, current_Q2 = self.critic(state, action)

            # Calculate the loss between the current Q value and the target Q value
            loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q)

            # Perform the gradient descent
            self.critic_optimizer.zero_grad()
            loss.backward()
            self.critic_optimizer.step()

            if it % policy_freq == 0:
                # Maximize the actor output value by performing gradient descent on negative Q values
                # (essentially perform gradient ascent)
                actor_grad, _ = self.critic(state, self.actor(state))
                actor_grad = -actor_grad.mean()
                self.actor_optimizer.zero_grad()
                actor_grad.backward()
                self.actor_optimizer.step()

                # Use soft update to update the actor-target network parameters by
                # infusing small amount of current parameters
                for param, target_param in zip(
                    self.actor.parameters(), self.actor_target.parameters()
                ):
                    target_param.data.copy_(
                        tau * param.data + (1 - tau) * target_param.data
                    )
                # Use soft update to update the critic-target network parameters by infusing
                # small amount of current parameters
                for param, target_param in zip(
                    self.critic.parameters(), self.critic_target.parameters()
                ):
                    target_param.data.copy_(
                        tau * param.data + (1 - tau) * target_param.data
                    )

            av_loss += loss
        self.iter_count += 1
        # Write new values for tensorboard
        self.writer.add_scalar("loss", av_loss / iterations, self.iter_count)
        self.writer.add_scalar("Av. Q", av_Q / iterations, self.iter_count)
        self.writer.add_scalar("Max. Q", max_Q, self.iter_count)

    def save(self, filename, directory):
        torch.save(self.actor.state_dict(), "%s/%s_actor.pth" % (directory, filename))
        torch.save(self.critic.state_dict(), "%s/%s_critic.pth" % (directory, filename))

    def load(self, filename, directory):
        self.actor.load_state_dict(
            torch.load("%s/%s_actor.pth" % (directory, filename))
        )
        self.critic.load_state_dict(
            torch.load("%s/%s_critic.pth" % (directory, filename))
        )


# Set the parameters for the implementation
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # cuda or cpu
seed = 0  # Random seed number
eval_freq = 5e3  # After how many steps to perform the evaluation
max_ep = 500  # maximum number of steps per episode
eval_ep = 10  # number of episodes for evaluation
max_timesteps = 5e6  # Maximum number of steps to perform
expl_noise = 1  # Initial exploration noise starting value in range [expl_min ... 1]
expl_decay_steps = (
    500000  # Number of steps over which the initial exploration noise will decay over
)
expl_min = 0.1  # Exploration noise after the decay in range [0...expl_noise]
batch_size = 40  # Size of the mini-batch
discount = 0.99999  # Discount factor to calculate the discounted future reward (should be close to 1)
tau = 0.005  # Soft target update variable (should be close to 0)
policy_noise = 0.2  # Added noise for exploration
noise_clip = 0.5  # Maximum clamping values of the noise
policy_freq = 2  # Frequency of Actor network updates
buffer_size = 1e6  # Maximum size of the buffer
file_name = "TD3_velodyne"  # name of the file to store the policy
save_model = True  # Weather to save the model or not
load_model = False  # Weather to load a stored model
random_near_obstacle = True  # To take random actions near obstacles or not

# Create the network storage folders
if not os.path.exists("./results"):
    os.makedirs("./results")
if save_model and not os.path.exists("./pytorch_models"):
    os.makedirs("./pytorch_models")

# Create the training environment
environment_dim = 20
robot_dim = 4
env = GazeboEnv("multi_robot_scenario.launch", environment_dim)
time.sleep(5)
torch.manual_seed(seed)
np.random.seed(seed)
state_dim = environment_dim + robot_dim
action_dim = 2
max_action = 1

# Create the network
network = TD3(state_dim, action_dim, max_action)
# Create a replay buffer
replay_buffer = ReplayBuffer(buffer_size, seed)
if load_model:
    try:
        network.load(file_name, "./pytorch_models")
    except:
        print(
            "Could not load the stored model parameters, initializing training with random parameters"
        )

# Create evaluation data store
evaluations = []

timestep = 0
timesteps_since_eval = 0
episode_num = 0
done = True
epoch = 1

count_rand_actions = 0
random_action = []

# Begin the training loop
while timestep < max_timesteps:

    # On termination of episode
    if done:
        if timestep != 0:
            network.train(
                replay_buffer,
                episode_timesteps,
                batch_size,
                discount,
                tau,
                policy_noise,
                noise_clip,
                policy_freq,
            )

        if timesteps_since_eval >= eval_freq:
            print("Validating")
            timesteps_since_eval %= eval_freq
            evaluations.append(
                evaluate(network=network, epoch=epoch, eval_episodes=eval_ep)
            )
            network.save(file_name, directory="./pytorch_models")
            np.save("./results/%s" % (file_name), evaluations)
            epoch += 1

        state = env.reset()
        done = False

        episode_reward = 0
        episode_timesteps = 0
        episode_num += 1

    # add some exploration noise
    if expl_noise > expl_min:
        expl_noise = expl_noise - ((1 - expl_min) / expl_decay_steps)

    action = network.get_action(np.array(state))
    action = (action + np.random.normal(0, expl_noise, size=action_dim)).clip(
        -max_action, max_action
    )

    # If the robot is facing an obstacle, randomly force it to take a consistent random action.
    # This is done to increase exploration in situations near obstacles.
    # Training can also be performed without it
    if random_near_obstacle:
        if (
            np.random.uniform(0, 1) > 0.85
            and min(state[4:-8]) < 0.6
            and count_rand_actions < 1
        ):
            count_rand_actions = np.random.randint(8, 15)
            random_action = np.random.uniform(-1, 1, 2)

        if count_rand_actions > 0:
            count_rand_actions -= 1
            action = random_action
            action[0] = -1

    # Update action to fall in range [0,1] for linear velocity and [-1,1] for angular velocity
    a_in = [(action[0] + 1) / 2, action[1]]
    next_state, reward, done, target = env.step(a_in)
    done_bool = 0 if episode_timesteps + 1 == max_ep else int(done)
    done = 1 if episode_timesteps + 1 == max_ep else int(done)
    episode_reward += reward

    # Save the tuple in replay buffer
    replay_buffer.add(state, action, reward, done_bool, next_state)

    # Update the counters
    state = next_state
    episode_timesteps += 1
    timestep += 1
    timesteps_since_eval += 1

# After the training is done, evaluate the network and save it
evaluations.append(evaluate(network=network, epoch=epoch, eval_episodes=eval_ep))
if save_model:
    network.save("%s" % file_name, directory="./models")
np.save("./results/%s" % file_name, evaluations)

3. 总结

实际上利用Gazebo进行强化学习无非是环境获取上的不同,Gazebo的环境控制需要使用ROS服务进行控制,状态可以通过Gazebo进行获取,同时某些必要数据需要从话题中获取,最重要的是组织获取 的数据(通过话题等)与控制Gazebo的仿真步骤之间的组合。
强化学习的手段与传统算法无异,强化学习方法最重要的是要确定动作空间、状态空间、奖励空间,这三个空间是work的前提。
在笔者自己的环境中,将获取里程计的话题以及获取激光点的数据替换成为了自己的本机的仿真环境匹配的话题。

 self.point_cloud = rospy.Subscriber(
            "/scan", LaserScan, self.laser_callback, queue_size=1
        )
        self.odom = rospy.Subscriber(
            "/odom", Odometry, self.odom_callback, queue_size=1
        )
        self.frontiers_sub = rospy.Subscriber(
            "/frontiers", Marker, self.frontiers, queue_size=1
        )
        self.center_frontiers_sub = rospy.Subscriber(
            "/center_frontiers", Marker, self.center_frontiers, queue_size=1
        )

与Gazebo仿真环境相关的话题有很多,用于在ROS中与仿真环境进行通信和交互。以下是一些常见的与Gazebo相关的话题以及它们的作用:

/gazebo/model_states:这个话题发布了所有仿真中模型的状态信息,包括它们的位置、姿态、线速度、角速度等。

/gazebo/link_states:类似于 /gazebo/model_states,但是发布了模型的每个链接的状态信息,适用于多链接模型。

/gazebo/set_model_state:这是一个用于设置模型状态的话题。通过向该话题发送消息,你可以控制模型的位置、姿态等属性。

/gazebo/set_link_state:类似于 /gazebo/set_model_state,但用于设置链接的状态,允许你更精细地控制模型的不同部分。

/gazebo/unpause_physics/gazebo/pause_physics:这些话题用于控制仿真的暂停和继续。通过向 /gazebo/unpause_physics 发送请求,可以取消暂停仿真物理模拟,而通过向 /gazebo/pause_physics 发送请求,可以将仿真暂停。

/gazebo/reset_world/gazebo/reset_simulation:这些话题用于重置仿真环境。 /gazebo/reset_world 用于重置仿真世界的状态,而 /gazebo/reset_simulation 用于重置仿真整个仿真会话的状态。

/gazebo/delete_model:通过向这个话题发送消息,你可以请求删除指定名称的模型,从仿真环境中移除它。

/gazebo/spawn_sdf_model/gazebo/spawn_urdf_model:这些话题用于在仿真环境中生成新的SDF或URDF模型。通过向这些话题发送消息,你可以在仿真环境中动态生成模型。

/gazebo/apply_body_wrench:这个话题用于对仿真环境中的物体施加力或扭矩,以模拟外部力或操作。

/gazebo/camera/*:用于模拟相机传感器,例如 /gazebo/camera/image 可以获取相机的图像数据。文章来源地址https://www.toymoban.com/news/detail-688767.html

到了这里,关于Gazebo仿真环境下的强化学习实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ROS gazebo 机器人仿真,环境与robot建模,添加相机 lidar,控制robot运动

    b站上有一个非常好的ros教程234仿真之URDF_link标签简介-机器人系统仿真_哔哩哔哩_bilibili,推荐去看原视频。 视频教程的相关文档见:6.7.1 机器人运动控制以及里程计信息显示 · Autolabor-ROS机器人入门课程《ROS理论与实践》零基础教程 本文对视频教程第六章的主要内容做一个总

    2024年02月03日
    浏览(44)
  • 强化学习:MuJoCo机器人强化学习仿真入门(1)

        声明 :我们跳过mujoco环境的搭建,搭建环境不难,可自行百度 下面开始进入正题(需要有一定的python基础与xml基础):  下面进入到建立机器人模型的部分: 需要先介绍URDF模型文件和导出MJCF格式  介绍完毕,下面开始进行mujoco仿真: 首先将这4个文件复制到.mujoco/muj

    2024年01月24日
    浏览(51)
  • 机器人仿真-gazebo学习笔记(4)xacro和传感器添加

    URDF文件不具备代码复用的特性(在上一篇文章也能发现,其实左右轮是极其相似的但还是要单独描述),一个复杂的机器人模型会拥有大量了的传感器和关节组件,这时候使用URDF文件就太难阅读了。精简化、可复用、模块化的xacro文件来了。 1.优势: ·精简模型代码: xacro是一

    2024年02月06日
    浏览(58)
  • 宇树机器人Unitree-go1学习记录-CMake编译与Gazebo仿真(解决虚拟机运行gazebo帧率低问题)

    前言:环境的安装省略,一般缺什么包就sudo apt-get install xxx安装就行 (推荐使用鱼香ROS一键安装,会帮你更换源) 创建ROS工作空间:mkdir xxx_ws(一般以ws为后缀)(不能有中文路径,否则编译不通过) 切换到工作空间文件夹:执行以下命令,将终端的当前目录切换到工作空间的

    2024年01月23日
    浏览(66)
  • Ubuntu18.04 Turtlebot2机器人移动控制 Rviz Gazebo仿真实现

    操作系统为ubuntu18.04 安装ROS Melodic Turtlebot2,很多大佬分享了详细的安装过程,在这里就不多赘述,安装遇到问题多百度,大部分都是可以解决的。 前期学习了赵虚左老师的ROS入门课程,结合Turtlebot2资料这里方便大家打开,放的创客制造的文档,也推荐大家去看官方文档 首先

    2023年04月25日
    浏览(69)
  • 干货 | 浅谈机器人强化学习--从仿真到真机迁移

    “ 对于机器人的运动控制,强化学习是广受关注的方法。本期技术干货,我们邀请到了小米工程师——刘天林,为大家介绍机器人(以足式机器人为主)强化学习中的sim-to-real问题及一些主流方法。 ” 一、前言 设计并制造可以灵活运动的足式机器人,一直是工程师追逐的梦

    2024年02月05日
    浏览(38)
  • ROS学习第三十六节——Gazebo仿真环境搭建

    1.1加入环境模型 在工程文件中创建worlds文件夹,并把之前下载的box_house.world文件放入  1.2编写launch文件 deamo03_car_world.launch 2.1启动 Gazebo 并添加组件 2.2保存仿真环境 添加完毕后,选择 file --- Save World as 选择保存路径(功能包下: worlds 目录),文件名自定义,后缀名设置为 .worl

    2023年04月24日
    浏览(37)
  • Gazebo机器人仿真

    本文基于 B站冰达机器人Gazebo教程,针对在仿真过程中出现的问题提出相应解决办法。 目标 : 设计出一台具备激光雷达、IMU和相机的机器人仿真模型用于相关实验。 获取实验功能包: 克隆完成后在工作空间路径下编译功能包 安装其他依赖 获取gazebo模型库: 自制实验场景

    2024年02月16日
    浏览(45)
  • 机器人Gazebo仿真应用

      Gazebo是一个优秀的功能强大开源物理环境仿真平台,具备强大的物理引擎,高质量的图形渲染等优异优点,可在机器人和周围环境加入多种物理属性,对机器人传感器信息通过插件形式加入仿真,并以可视化的方式进行显示。通过终端命令“roscore”启动ROS,重新打开一个终

    2024年02月04日
    浏览(49)
  • 机器人强化学习环境mujoco官方文档学习记录(一)——XML

    鉴于研究生课题需要,开始在mujoco中配置仿真环境。而官方文档中各种对象参数纷繁复杂,且涉及mujoco底层计算,不便于初学者进行开发设计。因此本文将MJCF模型的常用对象参数进行总结。 本文档仅供学习参考,如有问题欢迎大家学习交流。 本章是MuJoCo中使用的MJCF建模语言

    2024年02月02日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包