1 高斯滤波原理
高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。
高斯模板是通过对二维高斯函数进行采样(高斯模糊的卷积核里的数值满足高斯分布)、量化并归一化得到的,它考虑了邻域像素位置的影响,距离当前被平滑像素越近的点,加权系数越大,将加权平均值作为中心像素的输出结果。
加权的目的在于减轻平滑过程中造成的图像模糊
高斯模糊对于从图像中去除高斯噪声非常有效
高斯滤波常用的一个 3×3 模板
2 函数说明
函数原型:dst=GaussianBlur(src,ksize,sigmaX [,dst [,sigmaY [,borderType]]])
参数:
- src:输入图像;图像可以具有任意数量的通道,这些通道可以独立处理,但深度应为CV_8U,CV_16U,CV_16S,CV_32F或CV_64F。
- ksize:高斯内核大小。 (int,int);ksize.width和ksize.height可以不同,但它们都必须为正数和奇数,也可以为零,然后根据sigma计算得出。
- sigmaX: X方向上的高斯核标准偏差。
- dst:输出图像的大小和类型与src相同。
- sigmaY :Y方向上的高斯核标准差;如果sigmaY为零,则将其设置为等于sigmaX;如果两个sigmas为零,则分别从ksize.width和ksize.height计算得出;为了完全控制结果,而不管将来可能对所有这些语义进行的修改,建议指定所有ksize,sigmaX和sigmaY。
- borderType: 它描述要添加的边框类型。它由cv2等标志定义。cv2.BORDER_CONSTANT cv2.BORDER_REFLECT等
返回值:它返回一个图像。
3 示例
import cv2 as cv
img=cv.imread('C:\\Users\\xxx\\Downloads\\lena.jpg')
gauss=cv.GaussianBlur(img,(7,7),0)# (7,7)为卷积核大小
print(f'原图shape = {img.shape},高斯滤波后的shape = {gauss.shape}')
cv.imshow('original',img)
cv.imshow('gauss',gauss)
cv.waitKey(0)
cv.destroyAllWindows()
运行后结果如下:
文章来源:https://www.toymoban.com/news/detail-688774.html
文章来源地址https://www.toymoban.com/news/detail-688774.html
到了这里,关于opencv(15) 图像平滑处理之二:cv2.GaussianBlur()高斯滤波的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!