第64步 深度学习图像识别:多分类建模误判病例分析(Pytorch)

这篇具有很好参考价值的文章主要介绍了第64步 深度学习图像识别:多分类建模误判病例分析(Pytorch)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

基于WIN10的64位系统演示

一、写在前面

上期我们基于TensorFlow环境介绍了多分类建模的误判病例分析。

本期以健康组、肺结核组、COVID-19组、细菌性(病毒性)肺炎组为数据集,基于Pytorch环境,构建SqueezeNet多分类模型,分析误判病例,因为它建模速度快。

同样,基于GPT-4辅助编程。

二、误判病例分析实战

使用胸片的数据集:肺结核病人和健康人的胸片的识别。其中,健康人900张,肺结核病人700张,COVID-19病人549张、细菌性(病毒性)肺炎组900张,分别存入单独的文件夹中。

直接分享代码:

######################################导入包###################################
import copy
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision import models
from torch.utils.data import DataLoader
from torch import optim, nn
from torch.optim import lr_scheduler
import os
import matplotlib.pyplot as plt
import warnings
import numpy as np

warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

# 设置GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

################################导入数据集#####################################
from torchvision import datasets, transforms
from torch.nn.functional import softmax
from PIL import Image
import pandas as pd
import torch.nn as nn
import timm
from torch.optim import lr_scheduler

# 自定义的数据集类
class ImageFolderWithPaths(datasets.ImageFolder):
    def __getitem__(self, index):
        original_tuple = super(ImageFolderWithPaths, self).__getitem__(index)
        path = self.imgs[index][0]
        tuple_with_path = (original_tuple + (path,))
        return tuple_with_path

# 数据集路径
data_dir = "./MTB-1"

# 图像的大小
img_height = 256
img_width = 256

# 数据预处理
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(img_height),
        transforms.RandomHorizontalFlip(),
        transforms.RandomVerticalFlip(),
        transforms.RandomRotation(0.2),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize((img_height, img_width)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

# 加载数据集
full_dataset = ImageFolderWithPaths(data_dir, transform=data_transforms['train'])

# 获取数据集的大小
full_size = len(full_dataset)
train_size = int(0.8 * full_size)  # 假设训练集占70%
val_size = full_size - train_size  # 验证集的大小

# 随机分割数据集
torch.manual_seed(0)  # 设置随机种子以确保结果可重复
train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])

# 应用数据增强到训练集和验证集
train_dataset.dataset.transform = data_transforms['train']
val_dataset.dataset.transform = data_transforms['val']

# 创建数据加载器
batch_size = 8
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=0)

dataloaders = {'train': train_dataloader, 'val': val_dataloader}
dataset_sizes = {'train': len(train_dataset), 'val': len(val_dataset)}
class_names = full_dataset.classes

# 获取数据集的类别
class_names = full_dataset.classes

# 保存预测结果的列表
results = []

###############################定义SqueezeNet模型################################
# 定义SqueezeNet模型
model = models.squeezenet1_1(pretrained=True)  # 这里以SqueezeNet 1.1版本为例
num_ftrs = model.classifier[1].in_channels

# 根据分类任务修改最后一层
# 这里我们改变模型的输出层为4,因为我们做的是四分类
model.classifier[1] = nn.Conv2d(num_ftrs, 4, kernel_size=(1,1))

# 修改模型最后的输出层为我们需要的类别数
model.num_classes = 4

model = model.to(device)

# 打印模型摘要
print(model)

#############################编译模型#########################################
# 定义损失函数
criterion = nn.CrossEntropyLoss()

# 定义优化器
optimizer = torch.optim.Adam(model.parameters())

# 定义学习率调度器
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

# 开始训练模型
num_epochs = 20

# 初始化记录器
train_loss_history = []
train_acc_history = []
val_loss_history = []
val_acc_history = []

for epoch in range(num_epochs):
    print('Epoch {}/{}'.format(epoch, num_epochs - 1))
    print('-' * 10)

    # 每个epoch都有一个训练和验证阶段
    for phase in ['train', 'val']:
        if phase == 'train':
            model.train()  # 设置模型为训练模式
        else:
            model.eval()   # 设置模型为评估模式

        running_loss = 0.0
        running_corrects = 0

        # 遍历数据
        for inputs, labels, paths in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)

            # 零参数梯度
            optimizer.zero_grad()

            # 前向
            with torch.set_grad_enabled(phase == 'train'):
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                loss = criterion(outputs, labels)

                # 只在训练模式下进行反向和优化
                if phase == 'train':
                    loss.backward()
                    optimizer.step()

            # 统计
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)

        epoch_loss = running_loss / dataset_sizes[phase]
        epoch_acc = (running_corrects.double() / dataset_sizes[phase]).item()

        # 记录每个epoch的loss和accuracy
        if phase == 'train':
            train_loss_history.append(epoch_loss)
            train_acc_history.append(epoch_acc)
        else:
            val_loss_history.append(epoch_loss)
            val_acc_history.append(epoch_acc)

        print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))

    print()

# 保存模型
torch.save(model.state_dict(), 'SqueezeNet_model-m-s.pth')

# 加载最佳模型权重
#model.load_state_dict(best_model_wts)
#torch.save(model, 'shufflenet_best_model.pth')
#print("The trained model has been saved.")
###########################误判病例分析#################################
import os
import pandas as pd
from collections import defaultdict

# 判定组别的字典
group_dict = {
    ("COVID-19", "Normal"): "B",
    ("COVID-19", "Pneumonia"): "C",
    ("COVID-19", "Tuberculosis"): "D",
    ("Normal", "COVID-19"): "E",
    ("Normal", "Pneumonia"): "F",
    ("Normal", "Tuberculosis"): "G",
    ("Pneumonia", "COVID-19"): "H",
    ("Pneumonia", "Normal"): "I",
    ("Pneumonia", "Tuberculosis"): "J",
    ("Tuberculosis", "COVID-19"): "K",
    ("Tuberculosis", "Normal"): "L",
    ("Tuberculosis", "Pneumonia"): "M",
}

# 创建一个字典来保存所有的图片信息
image_predictions = {}

# 循环遍历所有数据集(训练集和验证集)
for phase in ['train', 'val']:
    # 设置模型的状态
    model.eval()

    # 遍历数据
    for inputs, labels, paths in dataloaders[phase]:
        inputs = inputs.to(device)
        labels = labels.to(device)

        # 计算模型的输出
        with torch.no_grad():
            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

        # 循环遍历每一个批次的结果
        for path, pred in zip(paths, preds):
            # 提取图片的类别
            actual_class = os.path.split(os.path.dirname(path))[-1] 
            # 提取图片的名称
            image_name = os.path.basename(path)
            # 获取预测的类别
            predicted_class = class_names[pred]

            # 判断预测的分组类型
            if actual_class == predicted_class:
                group_type = 'A'
            elif (actual_class, predicted_class) in group_dict:
                group_type = group_dict[(actual_class, predicted_class)]
            else:
                group_type = 'Other'  # 如果没有匹配的条件,可以归类为其他

            # 保存到字典中
            image_predictions[image_name] = [phase, actual_class, predicted_class, group_type]

# 将字典转换为DataFrame
df = pd.DataFrame.from_dict(image_predictions, orient='index', columns=['Dataset Type', 'Actual Class', 'Predicted Class', 'Group Type'])

# 保存到CSV文件中
df.to_csv('result-m-s.csv')

四、改写过程

先说策略:首先,先把二分类的误判病例分析代码改成四分类的;其次,用咒语让GPT-4帮我们续写代码已达到误判病例分析。

提供咒语如下:

①改写{代码1},改变成4分类的建模。代码1为:{XXX};

在{代码1}的基础上改写代码,达到下面要求:

(1)首先,提取出所有图片的“原始图片的名称”、“属于训练集还是验证集”、“预测为分组类型”;文件的路劲格式为:例如,“MTB-1\Normal\XXX.png”属于Normal,“MTB-1\COVID-19\XXX.jpg”属于COVID-19,“MTB-1\Pneumonia\XXX.jpeg”属于Pneumonia,“MTB-1\Tuberculosis\XXX.png”属于Tuberculosis;

(2)其次,根据样本预测结果,把样本分为以下若干组:(a)预测正确的图片,全部判定为A组;(b)本来就是COVID-19的图片,预测为Normal,判定为B组;(c)本来就是COVID-19的图片,预测为Pneumonia,判定为C组;(d)本来就是COVID-19的图片,预测为Tuberculosis,判定为D组;(e)本来就是Normal的图片,预测为COVID-19,判定为E组;(f)本来就是Normal的图片,预测为Pneumonia,判定为F组;(g)本来就是Normal的图片,预测为Tuberculosis,判定为G组;(h)本来就是Pneumonia的图片,预测为COVID-19,判定为H组;(i)本来就是Pneumonia的图片,预测为Normal,判定为I组;(j)本来就是Pneumonia的图片,预测为Tuberculosis,判定为J组;(k)本来就是Tuberculosis的图片,预测为COVID-19,判定为H组;(l)本来就是Tuberculosis的图片,预测为Normal,判定为I组;(m)本来就是Tuberculosis的图片,预测为Pneumonia,判定为J组;

(3)居于以上计算的结果,生成一个名为result-m.csv表格文件。列名分别为:“原始图片的名称”、“属于训练集还是验证集”、“预测为分组类型”、“判定的组别”。其中,“原始图片的名称”为所有图片的图片名称;“属于训练集还是验证集”为这个图片属于训练集还是验证集;“预测为分组类型”为模型预测该样本是哪一个分组;“判定的组别”为根据步骤(2)判定的组别,从A到J一共十组选择一个。

(4)需要把所有的图片都进行上面操作,注意是所有图片,而不只是一个批次的图片。

代码1为:{XXX}

③还需要根据报错做一些调整即可,自行调整。

最后,看看结果:

第64步 深度学习图像识别:多分类建模误判病例分析(Pytorch),《100 Steps to Get ML》—JET学习笔记,深度学习,分类,pytorch,图像识别

模型只运行了2次,所以效果很差哈,全部是预测成了COVID-19。

四、数据

链接:https://pan.baidu.com/s/1rqu15KAUxjNBaWYfEmPwgQ?pwd=xfyn

提取码:xfyn

五、结语

深度学习图像分类的教程到此结束,洋洋洒洒29篇,涉及到的算法和技巧也够发一篇SCI了。当然,图像识别还有图像分割和目标识别两块内容,就放到最后再说了。下一趴,我们来介绍时间序列建模!!!文章来源地址https://www.toymoban.com/news/detail-689016.html

到了这里,关于第64步 深度学习图像识别:多分类建模误判病例分析(Pytorch)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 第61步 深度学习图像识别:多分类建模(TensorFlow)

    一、写在前面 截至上期,我们一直都在做二分类的任务,无论是之前的机器学习任务,还是最近更新的图像分类任务。然而,在实际工作中,我们大概率需要进行多分类任务。例如肺部胸片可不仅仅能诊断肺结核,还有COVID-19、细菌性(病毒性)肺炎等等,这就涉及到图像识

    2024年02月11日
    浏览(38)
  • 第62步 深度学习图像识别:多分类建模(Pytorch)

    一、写在前面 上期我们基于TensorFlow环境做了图像识别的多分类任务建模。 本期以健康组、肺结核组、COVID-19组、细菌性(病毒性)肺炎组为数据集,基于Pytorch环境,构建SqueezeNet多分类模型,因为它建模速度快。 同样,基于GPT-4辅助编程,这次改写过程就不展示了。 二、多

    2024年02月11日
    浏览(38)
  • 第45步 深度学习图像识别:Nasnet建模(Tensorflow)

    一、写在前面 (1)Nasnet NASNet是由Google Brain团队在2017年提出的一种神经网络架构搜索(Neural Architecture Search,简称NAS)的结果。 NAS是一种用于自动化设计深度学习模型的技术。 在NAS中,机器学习算法 通过搜索和优化一系列可能的神经网络架构,然后挑选出性能最好的那一个

    2024年02月12日
    浏览(29)
  • 竞赛 深度学习卷积神经网络垃圾分类系统 - 深度学习 神经网络 图像识别 垃圾分类 算法 小程序

    🔥 优质竞赛项目系列,今天要分享的是 深度学习卷积神经网络垃圾分类系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 近年来,随着我国经济的快速发展,国家各项建设都蒸蒸日上,成绩显著。

    2024年02月08日
    浏览(43)
  • 竞赛选题 深度学习卷积神经网络垃圾分类系统 - 深度学习 神经网络 图像识别 垃圾分类 算法 小程序

    🔥 优质竞赛项目系列,今天要分享的是 深度学习卷积神经网络垃圾分类系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 近年来,随着我国经济的快速发展,国家各项建设都蒸蒸日上,成绩显著。

    2024年02月07日
    浏览(46)
  • 第39步 深度学习图像识别:Inception V3建模(Tensorflow)

    一、写在前面 (1)Inception V1 Inception是一种深度学习模型,也被称为GoogLeNet,因为它是由Google的研究人员开发的。 Inception模型的主要特点是它的“网络中的网络”结构, 也就是说,它在一个大网络中嵌入了很多小网络。 Inception模型中的每个小网络都有自己的任务,它们可以

    2024年02月11日
    浏览(35)
  • 第53步 深度学习图像识别:Bottleneck Transformer建模(Pytorch)

    一、写在前面 (1)Bottleneck Transformer \\\"Bottleneck Transformer\\\"(简称 \\\"BotNet\\\")是一种深度学习模型,在2021年由Google的研究人员在论文\\\"Bottleneck Transformers for Visual Recognition\\\"中提出。 BotNet的核心思想是 将Transformer模型的自注意力机制(Self-Attention Mechanism)引入到了ResNet模型的瓶颈结构

    2024年02月16日
    浏览(37)
  • 【深度学习】 图像识别实战 102鲜花分类(flower 102)实战案例

    本文主要对牛津大学的花卉数据集flower进行分类任务,写了一个具有普适性的神经网络架构(主要采用ResNet进行实现),结合了pytorch的框架中的一些常用操作,预处理、训练、模型保存、模型加载等功能 在文件夹中有102种花,我们主要要对这些花进行分类任务 文件夹结构

    2024年02月06日
    浏览(49)
  • 计算机竞赛 深度学习卷积神经网络垃圾分类系统 - 深度学习 神经网络 图像识别 垃圾分类 算法 小程序

    🔥 优质竞赛项目系列,今天要分享的是 深度学习卷积神经网络垃圾分类系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 近年来,随着我国经济的快速发展,国家各项建设都蒸蒸日上,成绩显著。

    2024年02月07日
    浏览(55)
  • 深度学习卷积神经网络垃圾分类系统 - 深度学习 神经网络 图像识别 垃圾分类 算法 小程序 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 深度学习卷积神经网络垃圾分类系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 近年来,随着我国经济的快速发展,国家各项建设都蒸蒸日上,成绩显著。

    2024年02月04日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包