基于OpenCV+Keras+tensorflow 实现的变电站作业管控平台源代码。含人脸识别考勤,移动目标跟踪,越线检测,安全措施检测,姿态识别等功能

这篇具有很好参考价值的文章主要介绍了基于OpenCV+Keras+tensorflow 实现的变电站作业管控平台源代码。含人脸识别考勤,移动目标跟踪,越线检测,安全措施检测,姿态识别等功能。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

#综述
使用该作业现场安全生产智能管控平台来实现变电站的安全生产的智能化管理,通过人脸识别功能进行人员的考勤;
通过人员、车辆的检测和识别来实现变电站的智能化管理;通过安全行为识别和安全区域报警功能来实现对变电站内人员和设备安全的监督;

基于OpenCV+Keras+tensorflow 实现的变电站作业管控平台源代码。含人脸识别考勤,移动目标跟踪,越线检测,安全措施检测,姿态识别等功能,opencv,keras,tensorflow

完整代码下载地址:基于OpenCV+Keras+tensorflow 实现的变电站作业管控平台源代码

移动目标跟踪

介绍

项目利用DeepSort算法实现作业现场移动目标跟踪定位。
论文参考:SIMPLE ONLINE AND REALTIME TRACKING WITH A DEEP ASSOCIATION METRIC

代码参考:https://github.com/nwojke/deep_sort

DeepSort是在Sort目标追踪基础上的改进。引入了在行人重识别数据集上离线训练的深度学习模型,
在实时目标追踪过程中,提取目标的表观特征进行最近邻匹配,可以改善有遮挡情况下的目标追踪效果。
同时,也减少了目标ID跳变的问题。

算法关键点为:
1、在计算detections和tracks之间的匹配程度时,使用了融合的度量方式。
包括卡尔曼滤波中预测位置和观测位置在马氏空间中的距离 和 bounding boxes之间表观特征的余弦距离。
2、其中bounding box的表观特征是通过一个深度网络得到的128维的特征
3、在匈牙利匹配detections和tracks时,使用的是级联匹配的方式。这里要注意的是,
并不是说级联匹配的方式就比global assignment效果好,而是因为本文使用kalman滤波计算运动相似度的缺陷导致使用级联匹配方式效果更好。

依赖

  • NumPy
  • sklearn
  • OpenCV

描述

在包中deep_sort是主要的跟踪代码:

  • detection.py:检测基类。
  • kalman_filter.py:卡尔曼滤波器实现和图像空间滤波的具体参数化。
  • linear_assignment.py:此模块包含最低成本匹配和匹配级联的代码。
  • iou_matching.py:此模块包含IOU匹配指标。
  • nn_matching.py:最近邻匹配度量的模块。
  • track.py:轨道类包含单目标轨道数据,例如卡尔曼状态,命中数,未命中,命中条纹,相关特征向量等。
  • tracker.py:这是多目标跟踪器类。

人脸识别

介绍

借助 Dlib 库捕获摄像头中的人脸,提取人脸特征,通过计算特征值之间的欧氏距离来和预存的人脸特征进行对比,
判断是否匹配,达到人脸识别的目的。

依赖

  • Dlib
  • OpenCV

描述

  • get_face_from_camera.py / 脸注册录入,将检测到的人脸图像存入相应的文件夹,形成特征图像数据集。

  • get_features_into_CSV.py / 提取出 128D 特征,然后计算出某人人脸数据的特征均值存入 CSV。

  • face_reco_from_camera.py / 调用摄像头,捕获摄像头中的人脸,如果检测到人脸,将摄像头中的人脸提取出 128D 的特征,
    然后和之前录入人脸的 128D 特征 进行计算欧式距离,判断身份。

安全措施异常检测

介绍

使用yolo v3框架训练自己的数据集完成安全措施的检测。分类包括未戴安全帽、未穿工作服、无安全措施、符合安全规范四种类型。
最终识别率在百分之75左右。

参考博客:https://blog.csdn.net/Patrick_Lxc/article/details/80615433

依赖

  • Python 3.5.2
  • Keras 2.1.5
  • tensorflow 1.6.0

描述

yolo关键点简述

1、端到端,输入图像,一次性输出每个栅格预测的一种或多种物体

2、坐标x,y代表了预测的bounding box的中心与栅格边界的相对值。
坐标w,h代表了预测的bounding box的width、height相对于整幅图像(或者栅格)width,height的比例。

3、每个格子可以预测B个bounding box,但是最终只选择只选择IOU最高的bounding box作为物体检测输出,

二维人体姿态估计

介绍

项目采用OpenPose算法对作业人员的姿态进行识别检测;OpenPose人体姿态识别可以实现人体动作、面部表情、手指运动等姿态估计。适用于单人和多人,具有极好的鲁棒性。是世界上首个基于深度学习的实时多人二维姿态估计应用。
其核心是利用Part Affinity Fields(PAFs)的自下而上的人体姿态估计算法。自下而上算法是先得到关键点位置再获得骨架;流程是首先通过预测人体关键点的热点图获得人体关键点的位置,在热点图中每个人体关键点上都有一个高斯的峰值,代表神经网络确定这里有一个人体的关键点。在得到检测结果之后,对关键点检测结果进行连接,推测出每个关键点具体是属于哪个人。

描述

使用TensorFlow轻松实现openpose。

只使用基本的python,所以代码很容易理解。

Original Repo(Caffe):https://github.com/CMU-Perceptual-Computing-Lab/openpose。

Dataloader和Post-processing代码来自tf-pose-estimation。

基于OpenCV+Keras+tensorflow 实现的变电站作业管控平台源代码。含人脸识别考勤,移动目标跟踪,越线检测,安全措施检测,姿态识别等功能,opencv,keras,tensorflow文章来源地址https://www.toymoban.com/news/detail-689073.html

到了这里,关于基于OpenCV+Keras+tensorflow 实现的变电站作业管控平台源代码。含人脸识别考勤,移动目标跟踪,越线检测,安全措施检测,姿态识别等功能的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 无人巡检 | AIRIOT变电站无人机运防一体管理解决方案

    传统的变电站安全管理存在着人力成本高、效率低、安全风险难以全面控制等问题,主要依靠人工巡检和监控设备,往往存在如下的运维问题和管理痛点: 巡检监控能力差: 传统变电站管理系统无法对变电站进行全面的巡检监控,以及无法完成对变电站周边环境的监测,企

    2024年01月22日
    浏览(44)
  • 新恒盛110kV变电站智能辅助系统综合监控平台+道巡检机器人

    江苏晋控装备新恒盛化工有限公司是晋能控股装备制造集团有限公司绝对控股的化工企业,公司位于江苏省新沂市。新恒盛公司40•60搬迁项目在江苏省新沂市经济开发区化工产业集聚区苏化片区建设,总投资为56.64亿元,该项目是晋能控股装备制造集团重点项目之一,也是徐州

    2024年04月25日
    浏览(41)
  • 电力变电站自动化控制钡铼R40工业路由器4G全网通

    随着电力行业的快速发展和电力系统的规模不断扩大,电力变电站自动化控制系统的建设和运行管理变得尤为重要。在这种背景下,钡铼R40工业路由器作为一款高性能、稳定可靠的通信设备,通过4G全网通技术,可以有效解决电力变电站自动化控制系统在现场应用中遇到的实

    2024年03月25日
    浏览(67)
  • 基于Tensorflow、Keras实现Stable Diffusion

    又搬运来了这个~~ 虽然不怎么用 也要学学 ~~ 原谅我的搬运~~ 最近一段时间,文本转图像模型 Stable Diffusion 可谓是爆红 AI 圈,其是由慕尼黑大学和 Runway 的研究者基于 CVPR 2022 的论文《High-Resolution Image Synthesis with Latent Diffusion Models》实现的,它可以在消费级 GPU 上运行。 自推出

    2024年02月09日
    浏览(37)
  • 【Keras+计算机视觉+Tensorflow】实现基于YOLO和Deep Sort的目标检测与跟踪实战(附源码和数据集)

    需要源码和数据集请点赞关注收藏后评论区留言私信~~~         YOLO是端到端的物体检测深度卷积神经网络,YOLO可以一次性预测多个候选框,并直接在输出层回归物体位置区域和区域内物体所属类别,而Faster R-CNN仍然是采用R-CNN那种将物体位置区域框与物体分开训练的思想,

    2024年02月13日
    浏览(59)
  • 基于TensorFlow和Keras的狗猫数据集的分类实验

    解释什么是overfit(过拟合)? 简单理解就是训练样本得到的输出和期望输出过于一致,而测试样本输出与期望输出相差却很大。为了得到一致假设而使假设变得过度复杂称为过拟合。想像某种学习算法产生了一个过拟合的分类器,这个分类器能够百分之百的正确分类样本数据

    2024年02月12日
    浏览(39)
  • 深度学习 | 基于 CPU 的 tensorflow + keras + python 版本对照及环境安装

    Hi,大家好,我是源于花海。 要让一个基于 CPU 的 tensorflow 和 keras 开发的深度学习模型正确运行起来,配置环境是个重要的问题,本文介绍了 tensorflow 和 keras 和对应的 python 版本以及安装环境的部分流程。 目录 一、tensorflow + keras + python 版本对照 二、tensorflow 和 keras 安装流

    2024年01月25日
    浏览(47)
  • 基于OpenCv和tensorflow的人脸识别设计与实现

    项目名称: 基于OpenCv和tensorflow的人脸识别 项目地址:https://gitee.com/yq233/opencv 环境配置: Python tensorflow2 OpenCv categories: 人工智能 description: Opencv是一个开源的的跨平台计算机视觉库,内部实现了图像处理和计算机视觉方面的很多通用算法,对于python而言,在引用opencv库的时候需要

    2024年02月03日
    浏览(48)
  • TensorFlow和keras安装教程

    1.安装anaconda 安装教程参考此博客:点这儿 2.安装成功记住自己anaconda的路径,以后pycharm配置会用 3.查看并记住自己conda版本号以及python版本号: 先点开始键,找到Anaconda Prompt并点击 查看conda: 查看python: 1.打开Anaconda prompt,新建一个环境(不建议用自带的base) 这是新建了一

    2023年04月26日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包