分布式搜索引擎

这篇具有很好参考价值的文章主要介绍了分布式搜索引擎。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 DSL查询文档

elasticsearch的查询依然是基于JSON风格的DSL来实现的。

1.1.DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool
    • function_score

查询的语法基本一致:

GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}

例如查询所有

  • 查询类型为match_all
  • 没有查询条件
// 查询所有
GET /indexName/_search
{
  "query": {
    "match_all": {
    }
  }
}

2.全文搜索查询

2.1.使用场景

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条
  • 根据词条去倒排索引库中匹配,得到文档id
  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索
  • 百度输入框搜索

2.2 match和mulit_match查询

match查询是全文检索查询的一种,会对用户输入内容进行分词,然后进行倒排索引库检索.(单字段查询)

  • match查询:单字段查询
  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}

mulit_match语法如下:

GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}
# 示例
GET /hotel/_search
{
  "query": {
    "match": {
      "all": "西直门如家"
    }
  }
}

GET /hotel/_search
{
  "query": {
    "multi_match": {
      "query": "外滩如家",
      "fields": ["brand","name"]
    }
  }
}

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

match和multi_match的区别是什么?

  • match:根据一个字段查询
  • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

3.精确查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询
  • range:根据值的范围查询

利用term进行精确查询,精确查询city值为上海的酒店.

# term查询
GET /hotel/_search
{
  "query": {
    "term": {
      "city": {
        "value": "上海"
      }
    }
  }
}

利用range进行范围查询查询,查询price在100-300之间的酒店,其中gte表示大于等于,lte表示小于等于(另外还有gtlt分别表示大于和小于).

# range查询
GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "gte": 100,
        "lte": 300
      }
    }
  }
}

4.地理查询

根据经纬度查询.

4.1矩形范围查询

geo_bounding_box:查询geo_point落在某个矩形范围的所有文档.
分布式搜索引擎,JAVA微服务,分布式,搜索引擎

// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}

4.2附近查询

geo_distance:查询指定中心点小于某个距离值的所有文档.

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

5.相关算法

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:
分布式搜索引擎,JAVA微服务,分布式,搜索引擎

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

分布式搜索引擎,JAVA微服务,分布式,搜索引擎

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

分布式搜索引擎,JAVA微服务,分布式,搜索引擎

5 Funciton score query

通过Funciton score query可以修改文档的相关性算分(query score),根据新的到的算分进行排序.
分布式搜索引擎,JAVA微服务,分布式,搜索引擎

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

正常查询在外滩的酒店

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {
        "match": {
          "all": "外滩"
        }
      }
    }
  }
}

分布式搜索引擎,JAVA微服务,分布式,搜索引擎
给如家的酒店进行分数的加权,每个加十分.

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {
        "match": {
          "all": "外滩"
        }
      },
      "functions": [
        {
          "filter": {
            "term": {
              "brand": "如家"
            }
          },
          "weight": 10
        }
      ],
      "boost_mode": "sum"
    }
  }
}

分布式搜索引擎,JAVA微服务,分布式,搜索引擎

6 Boolean Query

布尔查询是一个或多个查询子句的组合.组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

查找上海的酒店
从皇宫假日和如家上选取
价格不低于500
评分高于45

GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city":"上海"}}
      ],
      "should": [
        {"term": {"brand":"皇宫假日"}},
        {"term": {"brand":"如家"}}
      ],
      "must_not": [
        {"range": {"price":{"lte": 500}}}
      ],
      
      "filter": [
        {"range": {"score":{"gte": 45}}}
      ]
      
    }
  }
}

需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:文章来源地址https://www.toymoban.com/news/detail-689454.html

  • 名称搜索,属于全文检索查询,应该参与算分。放到must中
  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中
  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中
GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"brand":"如家"}}
      ],
      "must_not": [
        {"range": {"price":{"gte": 400}}}
      ],
      
      
      "filter": [
        {"geo_distance": {
      "distance": "10km", 
      "location": "31.21,121.5" 
        }}
      ]
    }
  }
}

到了这里,关于分布式搜索引擎的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 微服务分布式搜索引擎 ElasticSearch 搜索结果处理 排序、分页与高亮

    本文参考黑马 分布式Elastic search Elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容 搜索结果处理 搜索的结果可以按照用户指定的方式去处理或展示。 elasticsearch默认是根据相关度算分(_score)来排序,但是也支

    2024年02月02日
    浏览(59)
  • Java远程连接本地开源分布式搜索引擎ElasticSearch

    简单几步,结合Cpolar内网穿透工具实现Java远程连接操作本地Elasticsearch。 什么是elasticsearch?一个开源的分布式搜索引擎,具备非常多强大功能,可以用来实现搜索、日志统计、分析、系统监控等功能,可以帮助我们从海量数据中快速找到需要的内容。 Cpolar内网穿透提供了更高

    2024年02月05日
    浏览(50)
  • 微服务分布式搜索引擎 Elastic Search RestClient 操作文档

    本文参考黑马 分布式Elastic search Elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容 初始化RestHighLevelClient 为了与索引库操作分离,我们再次参加一个测试类,做两件事情: 初始化RestHighLevelClient 我们的酒店数据

    2024年01月24日
    浏览(41)
  • 微服务04 分布式搜索引擎 elasticsearch DSL数据聚合 自动补全 数据同步 集群 Sentinel

    聚合(aggregations)可以让我们极其 方便的实现对数据的统计、分析、运算 。例如: 什么品牌的手机最受欢迎? 这些手机的平均价格、最高价格、最低价格? 这些手机每月的销售情况如何? 实现这些 统计功能的比数据库的sql要方便的多,而且查询速度非常快 ,可以实现近

    2024年02月11日
    浏览(51)
  • 微服务04 分布式搜索引擎 elasticsearch DSL数据聚合 自动补全 数据同步 集群 微服务保护 Sentinel

    聚合(aggregations)可以让我们极其 方便的实现对数据的统计、分析、运算 。例如: 什么品牌的手机最受欢迎? 这些手机的平均价格、最高价格、最低价格? 这些手机每月的销售情况如何? 实现这些 统计功能的比数据库的sql要方便的多,而且查询速度非常快 ,可以实现近

    2024年02月15日
    浏览(56)
  • 分布式搜索引擎

    elasticsearch的查询依然是基于JSON风格的DSL来实现的。 Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括: 查询所有 :查询出所有数据,一般测试用。例如:match_all 全文检索(full text)查询 :利用分词器对用户输入内容分词,然后去倒排索

    2024年02月10日
    浏览(41)
  • 火山引擎云搜索服务升级云原生新架构;提供数十亿级分布式向量数据库能力

    从互联网发展伊始,搜索技术就绽放出了惊人的社会和经济价值。随着信息社会快速发展,数据呈爆炸式增长,搜索技术通过数据收集与处理,满足信息共享与快速检索的需求。 云搜索服务 ESCloud 是火山引擎提供的 完全托管在线分布式搜索服务 ,兼容 Elasticsearch、Kibana 等软

    2024年02月16日
    浏览(43)
  • 分布式搜索引擎ElasticSearch——搜索功能

    DSL查询分类 DSL官方文档 全文检索查询 精确查询 地理查询 复合查询 Function Score Query function score query Boolean Query 排序 分页 官方文档 高亮 快速入门 match,term,range,bool查询 排序和分页 高亮显示 就是在前面抽取的解析代码中进一步添加关于高亮的解析部分,因为highlight和so

    2024年02月01日
    浏览(54)
  • 分布式搜索引擎——elasticsearch搜索功能

    Elasticsearch提供了基于JSON的DSL (Domain Specific Language)来定义查询。常见的查询类型包括: 查询所有:查询出所有数据,一般测试用。例如:match_all 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如: match_query multi_match_query 精确查询:根据精确词条

    2024年02月05日
    浏览(68)
  • 【分布式搜索引擎02】

    elasticsearch的查询依然是基于JSON风格的DSL来实现的。 Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括: 查询所有 :查询出所有数据,一般测试用。例如:match_all 全文检索(full text)查询 :利用分词器对用户输入内容分词,然后去倒排索

    2024年02月01日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包