李宏毅 2022机器学习 HW2 strong baseline 上分路线

这篇具有很好参考价值的文章主要介绍了李宏毅 2022机器学习 HW2 strong baseline 上分路线。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

strong baseline上分路线

  1. baseline
  2. 增加concat_nframes (提升明显)
  3. 增加batchnormalization 和 dropout
  4. 增加hidden layer宽度至512 (提升明显)

提交文件命名规则为 prediction_{concat_nframes}[{n_hidden_layers}{dropout}_bn].csv

李宏毅 2022机器学习 HW2 strong baseline 上分路线,李宏毅机器学习,机器学习,人工智能,深度学习

report

  1. (2%) Implement 2 models with approximately the same number of parameters, (A) one narrower and deeper (e.g. hidden_layers=6, hidden_dim=1024) and (B) the other wider and shallower (e.g. hidden_layers=2, hidden_dim=1700). Report training/validation accuracies for both models.

    A: hidden_layers=6, hidden_dim=1024 (每一层加了dropout 0.25 和bn)

    [200/200] Train Acc: 0.843977 Loss: 0.454965 | Val Acc: 0.775733 loss: 0.789337
    

    B: hidden_layers=2, hidden_dim=1700 (每一层加了dropout 0.25 和bn)

    [200/200] Train Acc: 0.919308 Loss: 0.229898 | Val Acc: 0.750871 loss: 0.995369
    

    看下来,在这里,同样参数量下,更深的模型效果更好。另外对比一下B和之前上分路线中的 prediction_31_2_0.25_bn.csv,可以看出来,在2层模型结构中,hidden layer从512增加到1700后,效果就没有提升了(之前从256增加到512时,提升效果显著)。
    李宏毅 2022机器学习 HW2 strong baseline 上分路线,李宏毅机器学习,机器学习,人工智能,深度学习

  2. (2%) Add dropout layers, and report training/validation accuracies with dropout rates equal to (A) 0.25/(B) 0.5/© 0.75 respectively.
    这里就用1里面的A模型结构吧,只是改一下dropout大小
    A: 0.25

    [200/200] Train Acc: 0.919308 Loss: 0.229898 | Val Acc: 0.750871 loss: 0.995369
    

    B:0.5

    [200/200] Train Acc: 0.724419 Loss: 0.884636 | Val Acc: 0.761631 loss: 0.752881
    

    C:0.75

    [200/200] Train Acc: 0.604394 Loss: 1.355784 | Val Acc: 0.675998 loss: 1.072153
    

    对比A和B,dropout增大后,train Acc降低了很多,而Val Acc略微提升,原本以为B会在Kaggle上表现更好,但实际上还是A的Kaggle表现最好。再看B中的train和Val Acc,会注意到train 的Acc 是低于val 的Acc的,有可能B在val上过拟合了。
    李宏毅 2022机器学习 HW2 strong baseline 上分路线,李宏毅机器学习,机器学习,人工智能,深度学习文章来源地址https://www.toymoban.com/news/detail-689616.html

到了这里,关于李宏毅 2022机器学习 HW2 strong baseline 上分路线的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 李宏毅2022机器学习HW10解析

    准备工作 作业十是 黑箱攻击(Blackbox Attack) ,完成作业需要助教代码和数据集,运行代码过程中保持联网可以自动下载数据集,已经有数据集的情况可关闭助教代码中的下载数据部分。关注本公众号,可获得代码和数据集(文末有方法)。 提交地址 JudgeBoi: https://ml.ee.nt

    2024年02月07日
    浏览(42)
  • 2023李宏毅机器学习HW05样例代码中文注释版

    这里只是 2023 李宏毅机器学习 HW05 样例代码的中文注释版的分享,下面的内容绝大部分是样例代码,补充了小部分函数的功能解释,没有做函数功能上的修改,是 Simple baseline 版本。 notebook 代码下载: [EN] [ZH] 进阶阅读:李宏毅2023机器学习作业HW05解析和代码分享 英译中(繁体

    2024年02月05日
    浏览(87)
  • 李宏毅_机器学习_作业4(详解)_HW4 Classify the speakers

    本次作业需要学习完transformer后完成! 做语者辨识任务,一共有600个语者,给了每一个语者的语音feature进行训练,然后通过test_feature进行语者辨识。(本质上还是分类任务Classification) Simple(0.60824):run sample code and know how to use transformer Medium(0.70375):know how to adjust parameters of tra

    2024年02月01日
    浏览(42)
  • 李宏毅-机器学习hw4-self-attention结构-辨别600个speaker的身份

    一、慢慢分析+学习pytorch中的各个模块的参数含义、使用方法、功能: 1.encoder编码器中的nhead参数: self.encoder_layer = nn.TransformerEncoderLayer( d_model=d_model, dim_feedforward=256, nhead=2) 所以说,这个nhead的意思,就是有window窗口的大小,也就是一个b由几个a得到 2.tensor.permute改变维度的用

    2024年02月09日
    浏览(42)
  • Reid strong baseline 代码详解

    本项目是对Reid strong baseline代码的详解。项目暂未加入目标检测部分,后期会不定时更新,请持续关注。 本相比Reid所用数据集为Markt1501,支持Resnet系列作为训练的baseline网络。训练采用表征学习+度量学习的方式。 目录 训练参数 训练代码 create_supervised_trainer(创建训练函数)

    2024年02月05日
    浏览(38)
  • Reid strong baseline知识蒸馏【附代码】

    本项目是在Reid strong baseline基础上进行的更新,实现的知识蒸馏。项目暂未加入目标检测部分,后期会不定时更新,请持续关注。 本项目Reid所用数据集为Markt1501,支持Resnet系列作为训练的baseline网络。训练采用 表征学习+度量学习 的方式,蒸馏 特征蒸馏 【暂未更新逻辑蒸馏

    2024年02月07日
    浏览(74)
  • 【李宏毅】HW12

    在这个HW中,你可以自己实现一些深度强化学习方法: 1、策略梯度Policy Gradient 2、Actor-Critic 这个HW的环境是OpenAI gym的月球着陆器。希望这个月球着陆器落在两个旗子中间。 什么是月球着陆器? “LunarLander-v2”是模拟飞行器在月球表面着陆时的情况。 这项任务是使飞机能够“

    2024年02月10日
    浏览(36)
  • 李宏毅-21-hw3:对11种食物进行分类-CNN

    一、代码慢慢阅读理解+总结内化: 1.关于torch.nn.covd2d()的参数含义、具体用法、功能: (1)参数含义: 注意,里面的“padding”参数:《both》side所以是上下左右《四》边都会加一个padding数量的0列: 证明如下: 运行结果:torch.Size([3, 4, 5, 4] (2)具体用法: 输入:x[ batch_size,

    2024年02月09日
    浏览(36)
  • 机器学习李宏毅学习笔记39

    大模型+大资料 大模型的顿悟时刻 随数据量增加,模型可以从量变达到质变,从某一刻开始突然学会东西。 当成为大模型时,分数会从0,0突然变成100,完成“顿悟”. 横轴表示分布中产生答案的概率(信心分数),纵轴表示答案正确的概率。可以发现小模型的信心分数跟答案

    2024年02月14日
    浏览(74)
  • 机器学习李宏毅学习笔记33

    神经网络压缩(一) 类神经网络剪枝(pruning) 简化模型,用比较少的参数,但让效能差不多,这就是network compression这件事。有些情况下需要把模型用在resource constrain(资源有限)的情况下,比如说跑在智能手表上、小型无人机上等等。只有比较少的内存和计算能力,这时就

    2024年02月11日
    浏览(87)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包