利用OpenCV实现图像拼接

这篇具有很好参考价值的文章主要介绍了利用OpenCV实现图像拼接。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、介绍

     图像拼接.

二、分步实现

     要实现图像拼接,简单来说有以下几步:

  1. 对每幅图进行特征点提取
  2. 对对特征点进行匹配
  3. 进行图像配准
  4. 把图像拷贝到另一幅图像的特定位置
  5. 对重叠边界进行特殊处理

     PS:需要使用低版本的opencv,否则无法使用特征角点提取算子。

#include "highgui/highgui.hpp"    
#include "opencv2/nonfree/nonfree.hpp"    
#include "opencv2/legacy/legacy.hpp"   
#include <iostream>  

using namespace cv;
using namespace std;

typedef struct
{
    Point2f left_top;
    Point2f left_bottom;
    Point2f right_top;
    Point2f right_bottom;
}four_corners_t;

four_corners_t corners;

void CalcCorners(const Mat& H, const Mat& src)
{
    // 左上角(0, 0, 1)
    double v2[3] = { 0, 0, 1 };
    double v1[3] = { 0 };
    Mat V2 = Mat(3, 1, CV_64FC1, v2);
    Mat V1 = Mat(3, 1, CV_64FC1, v1);
    V1 = H * V2;
    corners.left_top.x = v1[0] / v1[2];
    corners.left_top.y = v1[1] / v1[2];

    // 左下角(0, src.rows, 1)
    v2[0] = 0;
    v2[1] = src.rows;
    v2[2] = 1;
    V2 = Mat(3, 1, CV_64FC1, v2);
    V1 = Mat(3, 1, CV_64FC1, v1);
    V1 = H * V2;
    corners.left_bottom.x = v1[0] / v1[2];
    corners.left_bottom.y = v1[1] / v1[2];

    // 右上角(src.cols, 0, 1)
    v2[0] = src.cols;
    v2[1] = 0;
    v2[2] = 1;
    V2 = Mat(3, 1, CV_64FC1, v2);
    V1 = Mat(3, 1, CV_64FC1, v1);
    V1 = H * V2;
    corners.right_top.x = v1[0] / v1[2];
    corners.right_top.y = v1[1] / v1[2];

    // 右下角(src.cols, src.rows, 1)
    v2[0] = src.cols;
    v2[1] = src.rows;
    v2[2] = 1;
    V2 = Mat(3, 1, CV_64FC1, v2);
    V1 = Mat(3, 1, CV_64FC1, v1);
    V1 = H * V2;
    corners.right_bottom.x = v1[0] / v1[2];
    corners.right_bottom.y = v1[1] / v1[2];
}

void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
{
    int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界  

    double processWidth = img1.cols - start; // 重叠区域的宽度  
    int rows = dst.rows;
    int cols = img1.cols; // 注意,是列数*通道数
    double alpha = 1; // img1中像素的权重  
    for (int i = 0; i < rows; i++)
    {
        uchar* p = img1.ptr<uchar>(i);  // 获取第i行的首地址
        uchar* t = trans.ptr<uchar>(i);
        uchar* d = dst.ptr<uchar>(i);
        for (int j = start; j < cols; j++)
        {
            // 如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
            if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
            {
                alpha = 1;
            }
            else
            {
                // img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好  
                alpha = (processWidth - (j - start)) / processWidth;
            }
            d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
            d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
            d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);

        }
    }
}

int main(int argc, char* argv[])
{
    Mat image01 = imread("image2.png", 1); //右图
    Mat image02 = imread("image1.png", 1); //左图
    imshow("p2", image01);
    imshow("p1", image02);

    // 灰度图转换  
    Mat image1, image2;
    cvtColor(image01, image1, CV_RGB2GRAY);
    cvtColor(image02, image2, CV_RGB2GRAY);

    // 提取特征点
    SurfFeatureDetector Detector(2000);
    vector<KeyPoint> keyPoint1, keyPoint2;
    Detector.detect(image1, keyPoint1);
    Detector.detect(image2, keyPoint2);

    // 特征点描述
    SurfDescriptorExtractor Descriptor;
    Mat imageDesc1, imageDesc2;
    Descriptor.compute(image1, keyPoint1, imageDesc1);
    Descriptor.compute(image2, keyPoint2, imageDesc2);

    FlannBasedMatcher matcher;
    vector<vector<DMatch> > matchePoints;
    vector<Mat> train_desc(1, imageDesc1);
    matcher.add(train_desc);
    matcher.train();
    matcher.knnMatch(imageDesc2, matchePoints, 2);
    cout << "total match points: " << matchePoints.size() << endl;

    // Lowe's algorithm,获取优秀匹配点
    vector<DMatch> GoodMatchePoints;
    for (int i = 0; i < matchePoints.size(); i++)
    {
        if (matchePoints[i][0].distance < 0.4 * matchePoints[i][1].distance)
        {
            GoodMatchePoints.push_back(matchePoints[i][0]);
        }
    }

    // draw match
    Mat first_match;
    drawMatches(image02, keyPoint2, image01, keyPoint1, GoodMatchePoints, first_match);
    imshow("first_match ", first_match);

    vector<Point2f> imagePoints1, imagePoints2;
    for (int i = 0; i < GoodMatchePoints.size(); i++)
    {
        imagePoints2.push_back(keyPoint2[GoodMatchePoints[i].queryIdx].pt);
        imagePoints1.push_back(keyPoint1[GoodMatchePoints[i].trainIdx].pt);
    }

    // 获取图像1到图像2的投影映射矩阵 尺寸为3*3  
    Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
    cout << "变换矩阵为:\n" << homo << endl << endl; // 输出映射矩阵      

   // 计算配准图的四个顶点坐标
    CalcCorners(homo, image01);
    cout << "left_top:" << corners.left_top << endl;
    cout << "left_bottom:" << corners.left_bottom << endl;
    cout << "right_top:" << corners.right_top << endl;
    cout << "right_bottom:" << corners.right_bottom << endl;

    // 图像配准  
    Mat imageTransform1, imageTransform2;
    warpPerspective(image01, imageTransform1, homo, Size(MAX(corners.right_top.x, corners.right_bottom.x), image02.rows));
    // warpPerspective(image01, imageTransform2, adjustMat*homo, Size(image02.cols*1.3, image02.rows*1.8));
    imshow("直接经过透视矩阵变换", imageTransform1);

    // 创建拼接后的图,需提前计算图的大小
    int dst_width = imageTransform1.cols;  // 取最右点的长度为拼接图的长度
    int dst_height = image02.rows;
    Mat dst(dst_height, dst_width, CV_8UC3);
    dst.setTo(0);

    imageTransform1.copyTo(dst(Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));
    image02.copyTo(dst(Rect(0, 0, image02.cols, image02.rows)));
    imshow("b_dst", dst);

    // 优化拼接处
    OptimizeSeam(image02, imageTransform1, dst);
    imshow("dst", dst);

    waitKey();
    return 0;
}

 opencv 环视拼接,OpenCV,opencv,计算机视觉,人工智能 opencv 环视拼接,OpenCV,opencv,计算机视觉,人工智能

 opencv 环视拼接,OpenCV,opencv,计算机视觉,人工智能

三、利用stitch实现

#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/stitching.hpp"
#include <iostream>

using namespace std;
using namespace cv;

int main(int argc, char* argv[])
{
	Mat img1 = imread("image1.png", cv::IMREAD_COLOR);
	Mat img2 = imread("image2.png", cv::IMREAD_COLOR);

	vector<Mat> imgs;
	imgs.push_back(img1);
	imgs.push_back(img2);

	Mat pano;
	Ptr<Stitcher> stitcher = Stitcher::create(Stitcher::PANORAMA);
	Stitcher::Status status = stitcher->stitch(imgs, pano);
	if (status != Stitcher::OK)
	{
		cout << "Can't stitch images, error code = " << int(status) << endl;
		return EXIT_FAILURE;
	}

	string result_name = "result1.jpg";
	imwrite(result_name, pano);
	cout << "stitching completed successfully\n" << result_name << " saved!";
	return EXIT_SUCCESS;
}

opencv 环视拼接,OpenCV,opencv,计算机视觉,人工智能文章来源地址https://www.toymoban.com/news/detail-689796.html

到了这里,关于利用OpenCV实现图像拼接的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python + OpenCV一步一步地实现图像拼接(原理与代码)

    图像拼接可以理解为三大步: 按顺序读取多幅图像,并保证图像按照从左到右的顺序。 发现这些图像像素之间的相关性(涉及到 单应性 )。 将这些图像拼接成为一张全景图像。 首先,需要了解如下几个概念。 Python OpenCV SIFT特征提取的原理与代码实现_乔卿的博客-CSDN博客

    2024年02月04日
    浏览(77)
  • 计算机图形图像技术(OpenCV核心功能、图像变换与图像平滑处理)

    1、显示图像 ①功能:在指定窗口中显示图像。 ②参数: name 为窗口的名字; image 为待显示的图像。 ③说明:可显示彩色或灰度的字节图像和浮点数图像,彩色图像数据按BGR顺序存储。 2、读入图像 ①功能:从指定文件读入图像。 ②参数: filename 为图像文件名,支持BMP、

    2024年02月03日
    浏览(50)
  • 【OpenCV】计算机视觉图像处理基础知识

    目录 前言 推荐 1、OpenCV礼帽操作和黑帽操作 2、Sobel算子理论基础及实际操作 3、Scharr算子简介及相关操作 4、Sobel算子和Scharr算子的比较 5、laplacian算子简介及相关操作 6、Canny边缘检测的原理 6.1 去噪 6.2 梯度运算 6.3 非极大值抑制 6.4 滞后阈值 7、Canny边缘检测的函数及使用

    2024年02月05日
    浏览(58)
  • Python+OpenCV 零基础学习笔记(4-5):计算机图形基础+Python相对文件路径+OpenCV图像+OpenCV视频

    【2022B站最好的OpenCV课程推荐】OpenCV从入门到实战 全套课程 CSDN标题里个括号对应视频的分P OpenCV+Python CSDN专栏 Gitee 项目地址 Python:3.11.5 Anaconda:23.7.4 IDE:vscode 运行环境:Windows OpenCV:4.8.1 Python+OpenCV 零基础学习笔记(1-3):anaconda+vscode+jupyter环境配置 本节课来了解以下OpenCV的简单使用

    2024年02月03日
    浏览(80)
  • 计算机毕业分享(含算法) opencv图像增强算法系统

    今天学长向大家分享一个毕业设计项目 毕业设计 opencv图像增强算法系统 项目运行效果: 毕业设计 基于机器视觉的图像增强 项目获取: https://gitee.com/sinonfin/algorithm-sharing 直方图均衡化是通过调整图像的灰阶分布,使得在0~255灰阶上的分布更加均衡,提高了图像的对比度,达

    2024年01月18日
    浏览(46)
  • 计算机视觉传统图像处理库opencv的使用

    人工智能领域的图像处理分支,整理了计算机视觉传统图像处理库opencv的使用网址链接。 opencv使用范围,主要用在计算机视觉、视频分析、机器学习、医学影像处理、自动驾驶、工业检测、游戏开发上。 1):opencv效果视频 opencv10个应用场景 - 知乎 2):opencv介绍 AI必备技能

    2024年02月09日
    浏览(46)
  • 深度学习图像风格迁移 - opencv python 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习图像风格迁移 - opencv python 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/danche

    2024年02月04日
    浏览(58)
  • 计算机竞赛 opencv python 深度学习垃圾图像分类系统

    🔥 优质竞赛项目系列,今天要分享的是 🚩 opencv python 深度学习垃圾分类系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 这是一个较为新颖的竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/p

    2024年02月13日
    浏览(80)
  • 计算机视觉基础【OpenCV轻松入门】:获取图像的ROI

    OpenCV的基础是处理图像,而图像的基础是矩阵。 因此,如何使用好矩阵是非常关键的。 下面我们通过一个具体的实例来展示如何通过Python和OpenCV对矩阵进行操作,从而更好地实现对图像的处理。 ROI(Region of Interest)是指图像或视频中被选取或感兴趣的特定区域。ROI可以用矩

    2024年02月22日
    浏览(41)
  • 《OpenCV 计算机视觉编程攻略》学习笔记(一:图像编程入门)

    参考引用 OpenCV 计算机视觉编程攻略(第3版) 说明 本书结合 C++ 和 OpenCV 3.2 全面讲解计算机视觉编程 所有代码均在 Ubuntu 系统中用 g++ 编译执行 0. 安装 OpenCV 库 在Ubuntu上安装OpenCV及使用 OpenCV 库分为多个模块 ,常见模块如下 opencv_core 模块包含库的核心功能 opencv_imgproc 模块包

    2024年02月09日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包