【经济研究】论文《经济ZC不确定性与创新》数据复现

这篇具有很好参考价值的文章主要介绍了【经济研究】论文《经济ZC不确定性与创新》数据复现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

数据简介:当前宏观经济面临较大下行压力,需要“稳中求进”兼顾经济高质量发展与经济增速等多种目标,这就不可避免地导致各种经济ZC的频繁调整,产生不确定性风险。在此背景下,经济政策不确定性上升如何影响企业决策,进而是否会阻碍中国创新驱动发展战略有效实施和产业升级动力提升,成为值得关注的重要问题。

现有大量的学者围绕经济ZC不确定性与研发活动、企业创新等问题进行研究。阳镇等(2023)研究表明,经济ZC不确定性有助于强化企业创新研发并促进企业数字化转型,推动数字技术驱动的企业数字创新发展;且经济政策不确定性有助于强化企业数字化转型并最终促进企业创新绩效。顾夏铭等(2018)研究发现,经济政策不确定性对上市公司的创新活动有激励效应, 体现在经济政策不确定性正向影响上市公司R&D投入和专利申请量。相关成果发表在《经济研究》等顶刊上。


数据来源:CSMAR数据库、WIND数据库、CCER中国经济金融数据库、国家知识产权局、Chinese Patent Data Project、斯坦福大学和芝加哥大学联合发布的经济政策不确定性指数

时间跨度:2000-2020

数据范围:上市公司

数据展示

【经济研究】论文《经济ZC不确定性与创新》数据复现,人工智能,大数据

【经济研究】论文《经济ZC不确定性与创新》数据复现,人工智能,大数据



参考文献

[1]阳镇,陈劲,吴海军.“拥抱”还是“拒绝”:经济政策不确定性与企业数字化转型[J].经济学家,2023(01):45-54.

[2]顾夏铭,陈勇民,潘士远.经济政策不确定性与创新——基于我国上市公司的实证分析[J].经济研究,2018,53(02):109-123.

下载链接

经济不确定性do代码:https://download.csdn.net/download/T0620514/88291119

经济不确定性数据:https://download.csdn.net/download/T0620514/88291118文章来源地址https://www.toymoban.com/news/detail-690142.html

到了这里,关于【经济研究】论文《经济ZC不确定性与创新》数据复现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • FPGA时序分析与约束(3)——时钟不确定性

            在之前的文章中,我们介绍了组合电路的时序和时序电路的时序问题,在阅读本文章之前,强烈推荐先阅读完本系列之前的文章,因为这是我们继续学习的理论的理论基础,前文链接: FPGA时序分析与约束(2)——时序电路时序         本文我们将介绍时钟相关

    2024年02月10日
    浏览(40)
  • 贝叶斯神经网络 - 捕捉现实世界的不确定性

    贝叶斯神经网络 - 捕捉现实世界的不确定性 Bayesian Neural Networks 生活本质上是不确定性和概率性的,贝叶斯神经网络 (BNN) 旨在捕获和量化这种不确定性 在许多现实世界的应用中,仅仅做出预测是不够的;您还想知道您对该预测的信心有多大。例如,在医疗保健领域,如果模型

    2024年02月10日
    浏览(32)
  • 动态不确定性的动态S过程(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 文献来

    2024年02月11日
    浏览(44)
  • 一种融合偶然和认知不确定性的贝叶斯深度学习RUL框架

    _ 原文: _ 《《A Bayesian Deep Learning RUL Framework Integrating Epistemic and Aleatoric Uncertainties》 _ 作者 __ : _ Gaoyang Lia,Li Yangb,Chi-Guhn Leec,Xiaohua Wangd,Mingzhe Ronge _ 作者单位: _ _a. School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University _ b. B

    2024年02月08日
    浏览(48)
  • 【人工智能的数学基础】深度学习中的不确定性(Uncertainty)

    使用贝叶斯深度学习建模深度学习中的不确定性. paper:What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? 现有的深度学习方法大多只能给出特定的预测结果,而不能给出结果的不确定性程度。 深度学习中输出结果的不确定性主要有两种: 偶然不确定性 是由数据中的

    2024年02月07日
    浏览(56)
  • 人工智能_不确定性推理(5,证据理论 6,模糊推理方法 7,模糊控制)

    4.5 证据理论 证据理论(theory of evidence):又称D一S理论,是德普斯特(APDempster)首先提出,沙佛(GShafer)进一步发展起来的一种处理不确定性的理论 D-S证据推理针对的是6分不清”或“不知道”这样的不确定性; 1981年巴纳特(JABarnett)把该理论引入专家系统中,同年卡威(JGarvey)等人用它

    2024年02月03日
    浏览(40)
  • 考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Python代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Python代码、数据、文章

    2024年02月05日
    浏览(43)
  • 利用Excel的LINEST计算线性拟合的斜率和截距的不确定性

      利用熟悉的Excel绘图功能,可以根据距离-高程散点数据拟合线性趋势线,如图1显示(河流阶地地形数据)。趋势线按如下方式插入:右击图表上的数据,添加趋势线,在图表上显示方程和 R 2 R^2 R 2 值。然而,趋势线函数并没有给出与线性拟合的斜率和截距相关的方差值

    2024年02月09日
    浏览(61)
  • 【经济调度】基于多目标宇宙优化算法优化人工神经网络环境经济调度研究(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码及数据 基于

    2024年02月16日
    浏览(49)
  • 【英】考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Python代码、数据、文章

    2024年02月04日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包