动态规划之连续乘积最大子数组 & 连续和最大子数组

这篇具有很好参考价值的文章主要介绍了动态规划之连续乘积最大子数组 & 连续和最大子数组。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一. 连续和最大子数组

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:

输入:nums = [1]
输出:1
示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

1.1 怎么想到使用动态规划?

当然是题目给的建议。

  1. 题目中讲,求最大和。
  2. 题目中讲,返回最大和。

我们要做的是求一个目标值(通常最大,最小), 不要求过程,只要结果。 对于这种题目,我们通常使用动态规划

1.2 动态规划第一步该做什么?

首先明确几个关键点。

  1. 最大连续子数组,与子序列区别开,即数组下标连续。
  2. 和最大,针对每个【i】怎么计算子问题。

当然就是找到状态转移方程啊!

f ( i ) = { f ( i − 1 ) + i ( i < = f ( i − 1 ) + i ) i ( i > f ( i − 1 ) + i ) f(i) =\left\{ \begin{aligned} f(i-1) + i (i <= f(i-1) + i) \\ i (i > f(i-1) + i) \end{aligned} \right. f(i)={f(i1)+i(i<=f(i1)+i)i(i>f(i1)+i)

求和的状态转移方程很简单。当我们有了 i - 1位置的结果,去求 i位置的连续子数组和,当然就是用 f ( i − 1 ) + i 和 i f(i-1) + i 和 i f(i1)+ii 比较一下,拿最大的呀

仔细想想,这不对吧?
动态规划之连续乘积最大子数组 & 连续和最大子数组,刷题笔记,动态规划,算法
这有什么不对的呢?

动态规划之连续乘积最大子数组 & 连续和最大子数组,刷题笔记,动态规划,算法
明显,前4个最大连续和是 1 + 2 + 3 = 6。

所以错在哪里了呢?或者说,我们怎么计算能得到6呢?

很简单,return 2 > 6 ? 2 : 6 不就行了吗

我们的函数计算的值是以当前坐标为结尾的数组的最大子数组。
动态规划的子问题和整体问题求的目标是一致的,只有状态再更迭,此处的状态就是下标index。

计算得到函数要与旧的最大值进行比较取最大。

fun maxSubArray(nums []int) int {
	pre, res := 0, nums[0]
	for _, v := range nums {
		pre = max(pre + v, v)
		res = max(res, pre)
	}
	return res
}

二. 连续乘积最大子数组

给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。

测试用例的答案是一个 32-位 整数。
子数组 是数组的连续子序列。

示例 1:

输入: nums = [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。
示例 2:

输入: nums = [-2,0,-1]
输出: 0
解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。

2.1 这个题目使用什么方法?

  1. 乘积最大。
  2. 返回乘积。
  3. 连续子数组。

这俩题目,是不是一样的。先想一想差别。

求最大值,返回结果, 那使用动态规划没什么问题。

2.2 直接写代码

fun maxSubArray(nums []int) int {
	pre, res := 1, nums[0]
	for _, v := range nums {
		pre = max(pre * v, v)
		res = max(res, pre)
	}
	return res
}

因为乘法,所以pre初始值改为1 。

会有问题吗?

动态规划之连续乘积最大子数组 & 连续和最大子数组,刷题笔记,动态规划,算法
明显的错误…

只是加法变乘法,原来的方案就行不通了。

问题就在于,乘法遇到负数,从最大变成了最小,-4 * 3 = -12

所以我们需要对这个负号进行一下特殊的处理。

2.3 状态该怎么变化呢?

如果遇到负数,我们希望使用一个最小的值与其做乘积运算,期望得到一个最大的值; 反之遇到正数,我们要用一个最大的值进行乘积运算。

所以,我们需要记两个值,分别是一个最大的preMax 和一个最小的preMin.

p r e M a x = f ( i ) m a x p r e M i n = f ( i ) m i n p r e M a x = M a x ( f ( i − 1 ) m a x ∗ n u m [ i ] , f ( i − 1 ) m i n ∗ n u m [ i ] , n u m [ I ] ) p r e M i n = M i n ( f ( i − 1 ) m i n ∗ n u m [ i ] , f ( i − 1 ) m a x ∗ n u m [ i ] , n u m [ I ] ) preMax = f(i)_{max} \\ preMin = f(i)_{min}\\ preMax = Max(f(i-1)_{max}*num[i], f(i-1)_{min} * num[i], num[I])\\ preMin= Min(f(i-1)_{min}*num[i], f(i-1)_{max} * num[i], num[I]) preMax=f(i)maxpreMin=f(i)minpreMax=Max(f(i1)maxnum[i],f(i1)minnum[i],num[I])preMin=Min(f(i1)minnum[i],f(i1)maxnum[i],num[I])

代码就比较简单了

func maxProduct(nums []int) int {
    preMax,preMin, res := 1,1, nums[0]
    for _,v := range nums {
    	mn,mx := preMin,preMax
    	preMax = max(mx * v, max(mn * v,v))
    	preMin = min(mn * v, min(mx * v,v))
    	res = max(preMax,res)
    }
    return res

为什么多了一行mn,mx := preMin,preMax
你可以去掉试试看~文章来源地址https://www.toymoban.com/news/detail-690337.html

20230902记录,今天先到这里。

到了这里,关于动态规划之连续乘积最大子数组 & 连续和最大子数组的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【七】【C语言\动态规划】最大子数组和、环形子数组的最大和、乘积最大子数组,三道题目深度解析

    动态规划就像是解决问题的一种策略,它可以帮助我们更高效地找到问题的解决方案。这个策略的核心思想就是将问题分解为一系列的小问题,并将每个小问题的解保存起来。这样,当我们需要解决原始问题的时候,我们就可以直接利用已经计算好的小问题的解,而不需要重

    2024年02月03日
    浏览(46)
  • 题解53 | #动态规划#连续子数组的最大和(一)(二)#

    题解 | #链表中倒数第k个结点# /** * struct ListNode { * int val; * struct ListNode *next; * }; *//** * * @par   第一次面试 c++后端开发 会问什么呀,第一次面试没一点经验   题解 | #求二叉树的层序遍历# # class TreeNode:# def __init__(self, x):# self.val = x# sel   题解 | #牛客网连续练习题目3天及以上的

    2024年02月04日
    浏览(69)
  • (动态规划) 剑指 Offer 42. 连续子数组的最大和 ——【Leetcode每日一题】

    难度:简单 输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。 要求时间复杂度为 O(n) 。 示例1: 输入: nums = [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。 提示 : 1 = a r r . l e n g t h = 1 0 5 1 = arr.length = 10^

    2024年02月11日
    浏览(52)
  • 动态规划(一) 变态青蛙跳台阶、最大连续子数组和、字符串分割 附源码讲解

    实现 import java.util.*; public class Main { public static void main(String[] args) { Scanner scan = new Scanner(System.in); while (scan.hasNext()){ int length = scan.nextInt(); int[] array = new int[length]; for (int i = 0; i length; i++) { array[i] = scan.nextInt(); } System.out.println(findResult(array)); } } private static int findResult(int[] array) {

    2024年04月17日
    浏览(54)
  • 【动态规划】NK刷题记之DP6 连续子数组最大和(C语言实现)

    ❤️博客主页:小镇敲码人 🍏 欢迎关注:👍点赞 👂🏽留言 😍收藏 🌞 勤奋努力是一个长期的过程,如果追求速成,就是异想天开。你越努力、越认真生活,生活就会变得越美丽。如果一直保持奋斗,你的人生将会发生翻天覆地的变化。 🍉 如果你也迷失在了路上,对人

    2024年02月08日
    浏览(47)
  • 动态规划 | 乘积最大

    原题链接 今年是国际数学联盟确定的“2000——世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰 90 周年。在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友 XZ 也有幸得以参加。活动中,主持人给所有参加活动的选手出了这样一

    2024年02月03日
    浏览(47)
  • 算法导论-分而治之-最大子数组(含动态规划解法)

    分治法 把一个问题分成(同类的)几个子问题。 递归地解决(征服)每个子问题。 将子问题的解决方案组合成整体解决方案。 通常的使用 将大小为n的问题分成两个大小为n / 2的子问题。 递归求解(攻克)两个子问题。 将两个方案组合成整体方案。 当子问题足够大以进行递归求解

    2024年02月03日
    浏览(41)
  • LeetCode 刷题 数据结构 数组 485 最大连续1的个数

    给定一个二进制数组  nums  , 计算其中最大连续  1  的个数。 示例 1: 示例 2: 提示: 1 = nums.length = 105 nums[i]  不是  0  就是  1.   参看bilibli视频-up主 爱学习的饲养员,讲解的很清晰。 手把手带你刷Leetcode力扣|各个击破数据结构和算法|大厂面试必备技能【已完结】-

    2024年02月15日
    浏览(51)
  • 【数据结构与算法】Kadane‘s算法(动态规划、最大子数组和)

    Kadane\\\'s 算法是一种用于解决最大子数组和问题的动态规划算法。这类问题的目标是在给定整数数组中找到一个连续的子数组,使其元素之和最大(数组含有负数)。 算法的核心思想是通过迭代数组的每个元素,维护两个变量来跟踪局部最优解和全局最优解。 以下是Kadane’s算

    2024年03月22日
    浏览(101)
  • dp算法 力扣152乘积最大子数组

    本文是Java代码!! 152. 乘积最大子数组 - 力扣(LeetCode) 给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。 测试用例的答案是一个 32-位 整数。 子数组 是数组的连续子序列。 示例 1: 输入

    2024年02月13日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包