基于改进莱维飞行和混沌映射的粒子群优化BP神经网络分类研究(Matlab代码实现)

这篇具有很好参考价值的文章主要介绍了基于改进莱维飞行和混沌映射的粒子群优化BP神经网络分类研究(Matlab代码实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

基于改进莱维飞行和混沌映射的粒子群优化BP网络分类研究是一种将粒子群优化算法(PSO)与BP神经网络相结合的分类研究方法。该方法通过改进莱维飞行和混沌映射的方式,提高了PSO算法的搜索能力和收敛速度,进而提高了BP神经网络的分类准确率。

具体而言,该方法首先使用莱维飞行算法来更新粒子的速度和位置,以实现全局搜索。莱维飞行算法是一种模拟莱维飞行的随机搜索算法,具有较好的全局搜索能力。然后,通过引入混沌映射来调整粒子的速度和位置,以实现局部搜索。混沌映射是一种非线性动力学系统,具有较好的局部搜索能力。通过融合莱维飞行和混沌映射,该方法能够在全局和局部范围内进行有效的搜索和优化。

在PSO算法的基础上,该方法还结合了BP神经网络进行分类任务。BP神经网络是一种常用的分类算法,具有较好的学习和泛化能力。通过将PSO算法与BP神经网络相结合,该方法能够利用PSO算法的优化能力来自动调整BP神经网络的权值和阈值,从而提高分类准确率。

通过实验证明,基于改进莱维飞行和混沌映射的粒子群优化BP网络分类研究方法在分类任务中具有较好的性能。该方法能够有效地搜索和优化BP神经网络的参数,提高分类准确率,并且具有较好的收敛速度和稳定性。因此,该方法在实际应用中具有一定的研究和应用价值。

📚2 运行结果

基于改进莱维飞行和混沌映射的粒子群优化BP神经网络分类研究(Matlab代码实现),神经网络,分类,matlab

 基于改进莱维飞行和混沌映射的粒子群优化BP神经网络分类研究(Matlab代码实现),神经网络,分类,matlab

 基于改进莱维飞行和混沌映射的粒子群优化BP神经网络分类研究(Matlab代码实现),神经网络,分类,matlab

 基于改进莱维飞行和混沌映射的粒子群优化BP神经网络分类研究(Matlab代码实现),神经网络,分类,matlab

 基于改进莱维飞行和混沌映射的粒子群优化BP神经网络分类研究(Matlab代码实现),神经网络,分类,matlab

 部分代码:

%网络权值赋值
net.iw{1,1}=reshape(w1,hiddennum,inputnum);%将w1由1行inputnum*hiddennum列转为hiddennum行inputnum列的二维矩阵
net.lw{2,1}=reshape(w2,outputnum,hiddennum);%更改矩阵的保存格式
net.b{1}=reshape(B1,hiddennum,1);%1行hiddennum列,为隐含层的神经元阈值
net.b{2}=reshape(B2,outputnum,1);

%网络训练
net=train(net,inputn,output_train);

an0=sim(net,XValidation);
predict_label=zeros(1,size(an0,2));
    for i=1:size(an0,2)
        predict_label(i)=find(an0(:,i)==max(an0(:,i)));
    end
    outputt=zeros(1,size(YValidation,2));
    for i=1:size(YValidation,2)
        outputt(i)=find(YValidation(:,i)==max(YValidation(:,i)));
    end
    accuracy=sum(outputt==predict_label)/length(outputt);   %计算预测的确率   
    error=1-accuracy;   
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]龚然,施文娟,朱振源.基于混沌映射和莱维飞行的黏菌优化算法[J].计算机与数字工程, 2023, 51(2):361-367.

[2]粱云杰.基于改进粒子群算法的BP神经网络优化研究[J].软件:教育现代化(电子版), 2013.

[3]张银雪,贾振红,刘子建.基于改进BP神经网络和粒子群优化算法的图像滤波方法的研究[J].光电子.激光, 2009(3):4.DOI:CNKI:SUN:GDZJ.0.2009-03-032.文章来源地址https://www.toymoban.com/news/detail-690415.html

🌈4 Matlab代码实现

到了这里,关于基于改进莱维飞行和混沌映射的粒子群优化BP神经网络分类研究(Matlab代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包