C++算法 —— 分治(2)归并

这篇具有很好参考价值的文章主要介绍了C++算法 —— 分治(2)归并。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


本篇前提条件是已学会归并排序

1、排序数组

912. 排序数组

C++算法 —— 分治(2)归并,C++算法,算法,c++,排序算法

排序数组也可以用归并排序来做。

    vector<int> tmp;//写成全局是因为如果在每一次小的排序中都创建一次,更消耗时间和空间,设置成全局的就更高效
    
    vector<int> sortArray(vector<int>& nums) {
        tmp.resize(nums.size());
        mergeSort(nums, 0, nums.size() - 1);
        return nums;
    }

    //归并做法
    void mergeSort(vector<int>& nums, int left, int right)
    {
        if(left >= right) return ;
        int mid = (left + right) / 2;
        mergeSort(nums, left, mid);
        mergeSort(nums, mid + 1, right);
        int cur1 = left, cur2 = mid + 1, i = 0;
        while(cur1 <= mid && cur2 <= right)
        {
            tmp[i++] = nums[cur1] <= nums[cur2] ? nums[cur1++] : nums[cur2++];
        }
        while(cur1 <= mid) tmp[i++] = nums[cur1++];
        while(cur2 <= right) tmp[i++] = nums[cur2++];
        for(int i = left; i <= right; i++)
        {
            nums[i] = tmp[i - left];
        }
    }

2、数组中的逆序对

剑指 Offer 51. 数组中的逆序对

C++算法 —— 分治(2)归并,C++算法,算法,c++,排序算法

如果暴力枚举,一定是可以解决问题的,但肯定不用这个解法。选择逆序对,可以先把数组分成两部分,左半部分 + 右半部分的逆序对,以及再找左半部分的数字和右半部分数字成对的数,比如上面例子中,7和6,7和4就是这种情况。左 + 右 + 一左一右就是整体的逆序对数量。当这两半部分都处理完后,就扩大区间,继续上述操作。这个解法也就是利用归并排序,归并排序的思路就是划分到最小的区间,只有1个数,它一定是有序的,回到上一层,也就是2个数的区间,让它们排好序,在它右边的也是2个数的区间,重复和它一样的操作,这样两个区间都有序后,再往上走一层,来到4个数的区间,4个数,每一半都是有序的,将整体的4个数排成有序的,再往上走,来到8个数的区间,重复操作。

利用归并排序的思路,我们在两个区间都排成升序后,定义两个指针cur指向两个区间的开头,然后一左一右比较大小,如果cur1比cur2大,那么cur1之后都比cur2大,就可以一次性加上多个逆序对的个数。

下面的代码可以从最小的区间开始一个个代入来理解。从只有2个数的区间开始,走到递归处,分成2个只有1个数的区间,那就会返回0,两处递归走完,来到下面的循环,此时left是0,right是1,mid是0,带入进去会发现,最后的ret只会是0或者1,并且这2个数也在最后排好序了,返回后,来到上一层,也就是走左边递归的那行代码,然后再走右边,也是2个数,也是同样的操作,2个区间排好序了,4个数的区间就一左一右比较大小,找出逆序对,排好序,再走到上一层,8个数的区间也是如此。

class Solution {
    int tmp[50010];
public:
    int reversePairs(vector<int>& nums) {
        return mergeSort(nums, 0, nums.size() - 1);
    }

    int mergeSort(vector<int>& nums, int left, int right)
    {
        if(left >= right) return 0;
        int ret = 0;
        //1. 找中间点,将数组分成两部分
        int mid = (left + right) >> 1;
        // [left, mid] [mid + 1, right]
        //2. 左边个数 + 排序 + 右边个数 + 排序
        ret += mergeSort(nums, left, mid);
        ret += mergeSort(nums, mid + 1, right);
        //3. 一左一右的个数
        int cur1 = left, cur2 = mid + 1, i = 0;
        while(cur1 <= mid && cur2 <= right)//while体内原本是归并排序的代码,现在就多加一点
        {
            if(nums[cur1] <= nums[cur2]) tmp[i++] = nums[cur1++];
            else
            {
                ret += mid - cur1 + 1;
                tmp[i++] = nums[cur2++];
            }
        }
        //4. 处理排序
        while(cur1 <= mid) tmp[i++] = nums[cur1++];
        while(cur2 <= right) tmp[i++] = nums[cur2++];
        for(int j = left; j <= right; j++)
        {
            nums[j] = tmp[j - left];//排序
        }
        return ret;
    }
};

3、计算右侧小于当前元素的个数

315. 计算右侧小于当前元素的个数

C++算法 —— 分治(2)归并,C++算法,算法,c++,排序算法

此题和上一个题有相同之处,也是分治,也是利用归并排序,这道题可以看作,当前元素后面,有多少比我小的,而上一题则是当前元素前面,有多少比我大的。仔细想一想,上一题是排升序,这一题排降序则更为合适。这题和上一题还有不同的地方。

cur1和cur2,排成降序,如果cur1 <= cur2,cur2++,因为我们要找比当前元素小的;如果cur1 > cur2,由于是降序,那么cur2之后的肯定都小,但这里不能加上ret,我们要返回一个数组,要把这个数加在当前元素的原始下标,因为数组已经被我们给排序了,所以要找原始下标。这里的做法就是从最一开始就除了tmp外,再定义一个数组,存储着原始下标,因为这时候还没开始排序,可以找得到,然后每次原数组元素变换位置,这个下标数组也跟着变换。

我们要定义四个数组,一个是结果数组,一个是原始下标数组,一个是辅助数组,也就是tmp,记录改动过的顺序,一个是下标辅助数组,记录改动后的下标顺序。在while循环中,每次更新tmp,下标辅助数组也跟着更新。如果cur1大于cur2,那么除了更新,还需要往结果数组中写入个数,要在当前元素的原始下标处写入个数,这里最好要画图来理解,画原始下标和下标变动后的图。在最后for循环中的排序,除了原数组nums,还有原始下标数组也要排序。

    vector<int> index;//原始元素下标
    vector<int> res;//最终结果
    int tmp[500010];//排序辅助数组
    int tmpIndex[500010];//元素下标的辅助数组
public:
    vector<int> countSmaller(vector<int>& nums) {
        int sz = nums.size();
        index.resize(sz);
        res.resize(sz);
        for(int i = 0; i < sz; i++)
        {
            index[i] = i;
        }
        mergeSort(nums, 0, sz - 1);
        return res;
    }

    void mergeSort(vector<int>& nums, int left, int right)
    {
        if(left >= right) return ;
        int mid = (left + right) >> 1;
        mergeSort(nums, left, mid);
        mergeSort(nums, mid + 1, right);
        int cur1 = left, cur2 = mid + 1, i = 0;
        while(cur1 <= mid && cur2 <= right)
        {
            if(nums[cur1] <= nums[cur2])
            {
                tmp[i] = nums[cur2];
                tmpIndex[i++] = index[cur2++];
            }
            else 
            {
                res[index[cur1]] += right - cur2 + 1;//经历了之前的排序,index已经记录下了最新的下标变动,这里就可以直接用cur1来获取正确的下标
                tmp[i] = nums[cur1];
                tmpIndex[i++] = index[cur1++];
            }
        }
        while(cur1 <= mid)
        {
            tmp[i] = nums[cur1];
            tmpIndex[i++] = index[cur1++];
        }
        while(cur2 <= right)
        {
            tmp[i] = nums[cur2];
            tmpIndex[i++] = index[cur2++];
        }
        for(int j = left; j <= right; j++)
        {
            nums[j] = tmp[j - left];
            index[j] = tmpIndex[j - left];
        }
    }

4、翻转对

493. 翻转对

C++算法 —— 分治(2)归并,C++算法,算法,c++,排序算法

还是一样的思路。左半部分,右半部分,然后一左一右。不过这里的条件不一样。这里的解决办法有两个,一个是计算当前元素后面有多少元素的两倍比我小,另一个是计算当前元素之前,有多少元素的一半比我大,这两个的高效顺序分别是降序和升序。

第一个思路,cur1和cur2,找当前元素的后面,那就以cur1为重点,如果cur2的2倍大于等于cur1,cur2就往后走,如果小于,那么后面的肯定都小于。第二个思路,cur1和cur2,找当前元素的前面,那就以cur2为重点,如果cur1的一半比cur2小,那么cur1后的肯定都符合条件,如果cur1的一半大于cur2,那cur1往后走。最后合并两个有序数组。

    int tmp[50010];
public:
    int reversePairs(vector<int>& nums) {
        return mergeSort(nums, 0, nums.size() - 1);
    }

    int mergeSort(vector<int>& nums, int left, int right)
    {
        if(left >= right) return 0;
        int ret = 0;
        int mid = (left + right) >> 1;
        ret += mergeSort(nums, left, mid);
        ret += mergeSort(nums, mid + 1, right); 
        int cur1 = left, cur2 = mid + 1, i = left;//先计算翻转对,0还是left都行
        /*while(cur1 <= mid)//这里排降序,也可以排升序
        {
            while(cur2 <= right && nums[cur2] >= nums[cur1] / 2.0) cur2++;//2.0是为了防止除不尽
            if(cur2 > right) break;
            ret += right - cur2 + 1;
            cur1++;
        }*/
        while(cur2 <= right)//升序
        {
            while(cur1 <= mid && nums[cur2] >= nums[cur1] / 2.0) cur1++;
            if(cur1 > mid) break;
            ret += mid - cur1 + 1;
            cur2++;
        }
        cur1 = left, cur2 = mid + 1;//归位一下,开始排序
        while(cur1 <= mid && cur2 <= right)
        {
            tmp[i++] = nums[cur1] <= nums[cur2] ? nums[cur1++] : nums[cur2++];
            //tmp[i++] = nums[cur1] <= nums[cur2] ? nums[cur2++] : nums[cur1++];
        }
        while(cur1 <= mid) tmp[i++] = nums[cur1++];
        while(cur2 <= right) tmp[i++] = nums[cur2++];
        for(int j = left; j <= right; j++)
        {
            nums[j] = tmp[j];
        }
        return ret;
    }

结束。文章来源地址https://www.toymoban.com/news/detail-690575.html

到了这里,关于C++算法 —— 分治(2)归并的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C++排序算法:归并排序详解

    一、归并排序 二、基本算法         1、分离         2、合并         3、图片讲解 三、代码实现         1、分离函数         2、合并函数          3、完整代码          4、样例 四、总结          归并排序 (Merge Sort)是建立在归并操作上的一种既有效又稳

    2024年02月12日
    浏览(40)
  • 【算法系列篇】分治-归并

    上一篇算法文章,我们介绍了分治-快排的算法,今天我将为大家分享关于分治的另外一种算法——归并。 归并算法是一种常用的排序算法,它采用分治策略将待排序的数组分解为更小的子数组,然后逐步合并这些子数组以获得最终的有序数组。归并排序的主要思想是将两个

    2024年02月09日
    浏览(48)
  • 算法:分治思想处理归并递归问题

    利用归并思想进行分治也是很重要的一种思路,在解决逆序对的问题上有很大的需求空间 于是首先归并排序是首先的,归并排序要能写出来: 以上为归并排序基本算法原理,基于这个原理可以解决逆序对问题,逆序对问题通常问法是,给定某一个数据,在整个数组中找比这

    2024年02月10日
    浏览(43)
  • C++归并排序算法的应用:计算右侧小于当前元素的个数

    给你一个整数数组 nums ,按要求返回一个新数组 counts 。数组 counts 有该性质: counts[i] 的值是 nums[i] 右侧小于 nums[i] 的元素的数量。 示例 1: 输入:nums = [5,2,6,1] 输出:[2,1,1,0] 解释: 5 的右侧有 2 个更小的元素 (2 和 1) 2 的右侧仅有 1 个更小的元素 (1) 6 的右侧有 1 个更小的元

    2024年02月06日
    浏览(38)
  • 归并算法:分治而治的高效算法大揭秘(图文详解)

    🎬 鸽芷咕 :个人主页  🔥 个人专栏 : 《数据结构算法》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 归并算法是我们算法中最常见的算法之一,其思想非常巧妙。本身归并是只能归并有序数组但是当我们利用了二路归并分治法之后,就可以使用归并的思想来帮我

    2024年02月03日
    浏览(48)
  • 【数据结构与算法】归并排序详解:归并排序算法,归并排序非递归实现

    归并排序是一种经典的排序算法,它使用了分治法的思想。下面是归并排序的算法思想: 递归地将数组划分成较小的子数组,直到每个子数组的长度为1或者0。 将相邻的子数组合并,形成更大的已排序的数组,直到最终得到一个完全排序的数组。 归并排序的过程可以分为三

    2024年01月22日
    浏览(70)
  • 【算法专题】分治 - 快速排序

    做题链接 - Leetcode -75.颜色分类 题目 :给定一个包含红色、白色和蓝色、共 n 个元素的数组 nums ,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。 我们使用整数 0、 1 和 2 分别表示红色、白色和蓝色。 必须在不使用库内置的 sort 函数的情

    2024年02月05日
    浏览(41)
  • 【算法】排序——归并排序和计数排序

     ========================================================================= 主页点击直达:个人主页 我的小仓库:代码仓库 C语言偷着笑:C语言专栏 数据结构挨打小记: 初阶数据结构专栏 Linux被操作记: Linux专栏 LeetCode刷题掉发记: LeetCode刷题 算法头疼记: 算法专栏  ========================

    2024年02月08日
    浏览(36)
  • 【排序算法】归并排序与快速排序

           🔥🔥 欢迎来到小林的博客!!       🛰️博客主页:✈️小林爱敲代码       🛰️博客专栏:✈️ 算法训练笔记       🛰️社区 :✈️ 进步学堂       🛰️欢迎关注:👍点赞🙌收藏✍️留言 今天给大家分享两种排序,一种是

    2024年01月19日
    浏览(39)
  • 【初阶算法4】——归并排序的详解,及其归并排序的扩展

    目录 前言 学习目标: 学习内容: 一、介绍归并排序 1.1 归并排序的思路 1.2 归并排序的代码 1.2.1 mergesort函数部分  1.2.2 process函数部分  1.2.3 merge函数部分  二、AC两道经典的OJ题目 题目一:逆序对问题 题目二:小和问题  三、练习一道LeetCode的题目 四、总结在什么情况下使

    2024年02月08日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包