stm32外设-RCC

这篇具有很好参考价值的文章主要介绍了stm32外设-RCC。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0. 写在最前

本栏目笔记都是基于stm32F10x

1. RCC简介

RCC是Reset and Clock Control (复位和时钟控制)的缩写,它是STM32内部的一个重要外设,负责管理各种时钟源和时钟分频,以及为各个外设提供时钟使能。RCC模块可以通过寄存器操作或者库函数来配置。

RCC是复位和时钟控制模块,它负责管理STM32内部的各种时钟源和时钟分频,以及为各个外设提供时钟使能。时钟是单片机运行的基础,时钟信号推动单片机内各个部分执行相应的指令。不同的外设可能需要不同的时钟频率,所以RCC模块可以通过寄存器操作或者库函数来配置系统时钟和总线时钟。

2. 时钟树介绍

stm32rcc是什么意思,单片机处理器,stm32,单片机,嵌入式硬件

主要元素介绍:

  • HSE 高速外部时钟信号 :HSE 是高速的外部时钟信号,可以由有源晶振或者无源晶振提供,频率从 4-16MHZ 不等。当使用有源晶振时,时钟从 OSC_IN 引脚进入, OSC_OUT 引脚悬空,当选用无源晶振时,时钟从OSC_IN 和 OSC_OUT 进入,并且要配谐振电容。
    HSE 最常使用的就是 8M 的无源晶振。当确定 PLL 时钟来源的时候, HSE 可以不分频或者 2 分频,这个由时钟配置寄存器 CFGR 的位 17: PLLXTPRE 设置,我们设置为 HSE 不分频。
  • PLL 时钟源:PLL 时钟来源可以有两个,一个来自 HSE,另外一个是 HSI/2,具体用哪个由时钟配置寄存器 CFGR 的位 16: PLLSRC 设置。HSI 是内部高速的时钟信号,频率为 8M,根据温度和环境的情况频率会有漂移,一般不作为 PLL 的时钟来源。这里我们选 HSE作为PLL的时钟来源。
  • PLL 时钟 PLLCLK:通过设置 PLL 的倍频因子,可以对 PLL 的时钟来源进行倍频,倍频因子可以是:[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],具体设置成多少,由时钟配置寄存器 CFGR的位 21-18: PLLMUL[3:0] 设置。我们这里设置为 9 倍频,因为上一步我们设置 PLL的时钟来源为 HSE=8M,所以经过 PLL 倍频之后的 PLL 时钟: PLLCLK = 8M *9 =72M。 72M 是 ST 官方推荐的稳定运行时钟,如果你想超频的话,增大倍频因子即可,最高为 128M。我们这里设置 PLL 时钟: PLLCLK = 8M *9 = 72M
  • 系统时钟 SYSCLK:系统时钟来源可以是: HSI、 PLLCLK、 HSE,具体的时钟配置寄存器 CFGR 的位 1-0:SW[1:0] 设置。我们这里设置系统时钟: SYSCLK = PLLCLK = 72M。
  • AHB 总线时钟 HCLK:系统时钟 SYSCLK 经过 AHB 预分频器分频之后得到时钟叫 APB 总线时钟,即 HCLK,分频因子可以是:[1,2,4, 8, 16, 64, 128, 256, 512],具体的由时钟配置寄存器 CFGR 的位7-4 : HPRE[3:0] 设置。片上大部分外设的时钟都是经过 HCLK 分频得到,至于 AHB总线上的外设的时钟设置为多少,得等到我们使用该外设的时候才设置,我们这里只需粗线条的设置好 APB 的时钟即可。我们这里设置为 1 分频,即 HCLK=SYSCLK=72M
  • APB2 总线时钟 HCLK2:APB1 总线时钟 PCLK1 由 HCLK 经过低速 APB 预分频器得到,分频因子可以是:[1,2,4,
    8, 16],具体的由时钟配置寄存器 CFGR 的位 10-8: PRRE1[2:0] 决定。 HCLK1 属于低速的总线时钟,最高为 36M,片上低速的外设就挂载到这条总线上,比如 USART2/3/4/5、SPI2/3, I2C1/2 等。至于 APB1 总线上的外设的时钟设置为多少,得等到我们使用该外设的时候才设置,我们这里只需粗线条的设置好 APB1 的时钟即可。我们这里设置为 2 分频,即 PCLK1 = HCLK/2 = 36M。

下图为newbing给我写的的系统时钟和总线时钟的关系框图(还不错):

+-----------------+   +-----------------+
|  内部RC振荡器   |   |  外部晶振或信号源 |
|     HSI/LSI     |   |      HSE/LSE    |
+-----------------+   +-----------------+
         |                     |
         +----------+----------+
                    |
                    v
              +-----------+
              |  时钟源选择 |
              +-----------+
                    |
                    v
              +-----------+
              | 锁相环(PLL)|
              +-----------+
                    |
                    v
              +-----------+
              | 系统时钟(SYSCLK)|
              +-----------+
                    |
        +---------+---------+---------+
        v         v         v         v
    +-------+  +-------+  +-------+  +-------+
    | AHB总线|  | APB1总线|  | APB2总线|  | 外设时钟|
    | HCLK   |  | PCLK1  |  | PCLK2  |  | TIMxCLK|
    +-------+  +-------+  +-------+  +-------+

其他元素介绍:

**A:USB 时钟:**USB 时钟是由 PLLCLK 经过 USB 预分频器得到,分频因子可以是: [1,1.5],具体的由时钟配置寄存器 CFGR 的位 22: USBPRE 配置。 USB 的时钟最高是 48M,根据分频因子反推过来算, PLLCLK 只能是 48M 或者是 72M。一般我们设置 PLLCLK=72M,
USBCLK=48M。 USB 对时钟要求比较高,所以 PLLCLK 只能是由 HSE 倍频得到,不能使用 HSI 倍频

B:Cortex 系统时钟:Cortex 系统时钟由 HCLK 8 分频得到,等于 9M, Cortex 系统时钟用来驱动内核的系统定时器 SysTick, SysTick 一般用于操作系统的时钟节拍,也可以用做普通的定时

C:ADC 时钟:ADC 时钟由 PCLK2 经过 ADC 预分频器得到,分频因子可以是 [2,4,6,8],具体的由时钟配置寄存器 CFGR 的位 15-14: ADCPRE[1:0] 决定。很奇怪的是怎么没有 1 分频。ADC 时钟最高只能是 14M,如果采样周期设置成最短的 1.5 个周期的话, ADC 的转换时间可以达到最短的 1us。如果真要达到最短的转换时间 1us 的话,那 ADC 的时钟就得是 14M,反推 PCLK2 的时钟只能是: 28M、 56M、 84M、 112M,鉴于 PCLK2 最高是 72M,所以只能取 28M 和 56M

D:RTC 时钟、独立看门狗时钟:RTC 时钟可由 HSE/128 分频得到,也可由低速外部时钟信号 LSE 提供,频率为32.768KHZ,也可由低速内部时钟信号 HSI 提供,具体选用哪个时钟由备份域控制寄存器 BDCR 的位 9-8: RTCSEL[1:0] 配置。独立看门狗的时钟由 LSI 提供,且只能是由 LSI 提供, LSI 是低速的内部时钟信号,频率为 30~60KHZ 直接不等,一般取40KHZ

E:MCO 时钟输出:MCO 是 microcontroller clock output 的缩写,是微控制器时钟输出引脚,在 STM32 F1系列中由 PA8 复用所得,主要作用是可以对外提供时钟,相当于一个有源晶振。 MCO的时钟来源可以是: PLLCLK/2、 HSI、 HSE、 SYSCLK,具体选哪个由时钟配置寄存器CFGR 的位 26-24: MCO[2:0] 决定。除了对外提供时钟这个作用之外,我们还可以通过示波器监控 MCO 引脚的时钟输出来验证我们的系统时钟配置是否正确。

3. 官方的系统时钟初始化函数

tatic void SetSysClockTo72(void)
{
  __IO uint32_t StartUpCounter = 0, HSEStatus = 0;
  
  /* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/    
  /* 使能 HSE */    
  RCC->CR |= ((uint32_t)RCC_CR_HSEON);
 
  /* 等待HSE就绪并做超时处理 */
  do
  {
    HSEStatus = RCC->CR & RCC_CR_HSERDY;
    StartUpCounter++;  
  } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));

  if ((RCC->CR & RCC_CR_HSERDY) != RESET)
  {
    HSEStatus = (uint32_t)0x01;
  }
  else
  {
    HSEStatus = (uint32_t)0x00;
  }  

  // 如果HSE启动成功,程序则继续往下执行
  if (HSEStatus == (uint32_t)0x01)
  {
    /* 使能预取指 */
    FLASH->ACR |= FLASH_ACR_PRFTBE;

    /* Flash 2 wait state */
    FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);
    FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;    

 
    /* HCLK = SYSCLK = 72M */
    RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;
      
    /* PCLK2 = HCLK = 72M */
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;
    
    /* PCLK1 = HCLK = 36M*/
    RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;
    
    /*  锁相环配置: PLLCLK = HSE * 9 = 72 MHz */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |
                                        RCC_CFGR_PLLMULL));
    RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);

    /* 使能 PLL */
    RCC->CR |= RCC_CR_PLLON;

    /* 等待PLL稳定 */
    while((RCC->CR & RCC_CR_PLLRDY) == 0)
    {
    }    
    /* 选择PLLCLK作为系统时钟*/
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
    RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;    

    /* 等待PLLCLK切换为系统时钟 */
    while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)
    {
    }
  }
  else
  { /* 如果HSE 启动失败,用户可以在这里添加处理错误的代码 */
  }
}

4. 配置时钟实验

4.1 使用HSE

一般情况下,我们都是使用 HSE,然后 HSE 经过 PLL 倍频之后作为系统时钟。通常的配置是:HSE=8M, PLL 的倍频因子为: 9,系统时钟就设置成:SYSCLK = 8M * 9 = 72M。使用 HSE,系统时钟 SYSCLK 最高是 128M。我们使用的库函数就是这么干的,当程序来到 main 函数之前,启动文件: statup_stm32f10x_hd.s 已经调用 SystemInit() 函数把系统时钟初始化成 72MHZ, SystemInit()在库文件: system_stm32f10x.c 中定义。如果我们想把系统时钟设置低一点或者超频的话,可以修改底层的库文件,但是为了维持库的完整性,我们可以根据时钟树的流程自行写一个

void HSE_SetSysClk( uint32_t RCC_PLLMul_x )
{
	ErrorStatus HSEStatus;
	
	// 把RCC 寄存器复位成复位值
	RCC_DeInit();	

	// 使能 HSE 
	RCC_HSEConfig(RCC_HSE_ON);
	
	HSEStatus = RCC_WaitForHSEStartUp();
	
	if( HSEStatus == SUCCESS )
	{
		// 使能预取指
		FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
		FLASH_SetLatency(FLASH_Latency_2);
		
		RCC_HCLKConfig(RCC_SYSCLK_Div1);
		RCC_PCLK1Config(RCC_HCLK_Div2);
		RCC_PCLK2Config(RCC_HCLK_Div1);
		
		// 配置 PLLCLK = HSE * RCC_PLLMul_x
    RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_x);
		
    // 使能PLL
		RCC_PLLCmd(ENABLE);
		
		// 等待PLL稳定
		while( RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET );
		
    // 选择系统时钟
		RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
		 
    while( RCC_GetSYSCLKSource() != 0x08 );
	}
	else
  {
		/* 如果HSE 启动失败,用户可以在这里添加处理错误的代码 */
	}
}
  • 首先,调用RCC_DeInit()函数,把RCC寄存器复位成复位值,以便重新配置时钟系统。
  • 然后,调用RCC_HSICmd(ENABLE)函数,使能HSI,并检查RCC->CR寄存器的HSIRDY位是否置1,表示HSI就绪。
  • 如果HSI就绪,则继续配置时钟系统。首先,调用FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable)函数和FLASH_SetLatency(FLASH_Latency_2)函数,使能预取指缓冲区,并设置闪存延迟周期为2个时钟周期。这样可以提高闪存的读取速度和性能。
  • 接着,调用RCC_HCLKConfig(RCC_SYSCLK_Div1)函数、RCC_PCLK1Config(RCC_HCLK_Div2)函数和RCC_PCLK2Config(RCC_HCLK_Div1)函数,分别设置AHB总线时钟(HCLK)、APB1总线时钟(PCLK1)和APB2总线时钟(PCLK2)的分频系数。在这里,HCLK = SYSCLK / 1 = SYSCLK;PCLK1 = HCLK / 2 = SYSCLK / 2;PCLK2 = HCLK / 1 = SYSCLK。
  • 然后,调用RCC_PLLConfig(RCC_PLLSource_HSI_Div2, RCC_PLLMul_x)函数,配置PLL的时钟源为HSI/2,并设置PLL的倍频系数为RCC_PLLMul_x。在这里,PLL输入时钟为8MHz / 2 = 4MHz;PLL输出时钟为4MHz * RCC_PLLMul_x。
  • 接着,调用RCC_PLLCmd(ENABLE)函数,使能PLL,并检查RCC->CR寄存器的PLLRDY位是否置1,表示PLL就绪。
  • 最后,调用RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK)函数,选择系统时钟源为PLL输出时钟,并检查RCC->CFGR寄存器的SWS位是否等于0x08(二进制1000),表示系统时钟切换成功。

4.2 使用HIS

当 HSE 故障的时候,如果 PLL 的时钟来源是 HSE,那么当 HSE 故障的时候,不仅 HSE 不能使用,连 PLL 也会被关闭,这个时候系统会自动切换 HSI 作为系统时钟,此时 SYSCLK=HSI=8M,如果没有开启 CSS 和 CSS 中断的话,那么整个系统就只能在低速率运行,这是系统跟瘫痪没什么两样。如果开启了 CSS 功能的话,那么可以当 HSE 故障时,在 CSS 中断里面采取补救措施,使用 HSI,并把系统时钟设置为更高的频率,最高是 64M, 64M 的频率足够一般的外设使用,如:ADC、 SPI、 I2C 等。但是这里就又有一个问题了,原来 SYSCLK=72M,现在因为故障改成 64M,那么那些外设的时钟肯定被改变了,那么外设工作就会被打乱,那我们是不是在设置 HSI 时钟的时候,也重新调整外设总线的分频因子,即 AHB, APB2 和 APB1 的分频因子,使外设的时钟达到跟 HSE 没有故障之前一样。但是这个也不是最保障的办法,毕竟不能一直使用 HSI,所以当HSE 故障时还是要采取报警措施。还有一种情况是,有些用户不想用 HSE,想用 HSI,但是又不知道怎么用 HSI 来设置系统时钟,因为调用库函数都是使用 HSE,下面我们给出个使用 HSI 配置系统时钟例子,起个抛砖引玉的作用

void HSI_SetSysClk( uint32_t RCC_PLLMul_x )
{
	__IO uint32_t HSIStatus = 0;
	
	// 把RCC 寄存器复位成复位值
	RCC_DeInit();	

	// 使能 HSI 
	RCC_HSICmd(ENABLE);
	
	HSIStatus = RCC->CR & RCC_CR_HSIRDY;
	
	if( HSIStatus == RCC_CR_HSIRDY )
	{
		// 使能预取指
		FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
		FLASH_SetLatency(FLASH_Latency_2);
		
		RCC_HCLKConfig(RCC_SYSCLK_Div1);
		RCC_PCLK1Config(RCC_HCLK_Div2);
		RCC_PCLK2Config(RCC_HCLK_Div1);
		
		// 配置 PLLCLK = HSE * RCC_PLLMul_x
    RCC_PLLConfig(RCC_PLLSource_HSI_Div2, RCC_PLLMul_x);
		
    // 使能PLL
		RCC_PLLCmd(ENABLE);
		
		// 等待PLL稳定
		while( RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET );
		
    // 选择系统时钟
		RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
		
    while( RCC_GetSYSCLKSource() != 0x08 );
	}
	else
  {
		/* 如果HSI 启动失败,用户可以在这里添加处理错误的代码 */
	}
}

6. 写在最后

给个赞吧😄文章来源地址https://www.toymoban.com/news/detail-690654.html

到了这里,关于stm32外设-RCC的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【GD32】从0开始学GD32单片机(9)—— SPI外设详解+主机从机发送和接收例程

    SPI是串行外设接口(Serial Peripheral Interface)的缩写,是一种 高速的,全双工,同步的 通信总线。 SPI总共需要4根线来实现通信, NSS:片选线,用于选择需要通信的从机;CLK:同步时钟线,用于提供同步时钟信号;MISO:主机读从机写线;MOSI:主机写从机读线 。 GD32F103系列的

    2023年04月08日
    浏览(35)
  • 【GD32】从0开始学GD32单片机(8)—— I2C外设详解+主机从机发送和接收例程

    I2C总线是由Philips公司开发的一种简单、双向二线制同步串行总线。它只需要两根线即可在连接于总线上的器件之间传送信息。 I2C总线是一个真正的多主机总线,如果两个或多个主机同时初始化数据传输,可以通过冲突检测和仲裁防止数据破坏,每个连接到总线上的器件都有

    2024年02月02日
    浏览(73)
  • GD32单片机和STM32单片机的对比分析

    GD32单片机和STM32单片机都是基于Arm Cortex-M3/M4内核的32位通用微控制器,广泛应用于各种嵌入式系统和物联网领域。两者之间有很多相似之处,但也有一些不同之处,本文将从以下几个方面对比分析两者的特点、优势和开发成本。 GD32单片机采用的是二代的M3/M4内核,而STM32单片

    2024年02月16日
    浏览(47)
  • STM32单片机(一)STM32简介

    ❤️ 专栏简介:本专栏记录了从零学习单片机的过程,其中包括51单片机和STM32单片机两部分;建议先学习51单片机,其是STM32等高级单片机的基础;这样再学习STM32时才能融会贯通。 ☀️ 专栏适用人群 :适用于想要从零基础开始学习入门单片机,且有一定C语言基础的的童鞋

    2024年02月10日
    浏览(45)
  • STM32单片机开发-01 STM32介绍

    通过野火开发板学习单片机 从内核上分有Cortex-M0、M3、M4 和M7 F1 代表了基础型,基于Cortex-M3 内核,主频为72MHZ F4 代表了高性能,基于Cortex-M4 内核,主频180M。 数据手册:用于芯片选型和设计原理图 参考手册:用于编程时查阅 Icode总线 – 该总线讲M3内核的指令总线与闪存指令

    2024年01月21日
    浏览(44)
  • STM32单片机(二)STM32环境搭建

    ❤️ 专栏简介:本专栏记录了从零学习单片机的过程,其中包括51单片机和STM32单片机两部分;建议先学习51单片机,其是STM32等高级单片机的基础;这样再学习STM32时才能融会贯通。 ☀️ 专栏适用人群 :适用于想要从零基础开始学习入门单片机,且有一定C语言基础的的童鞋

    2024年02月10日
    浏览(48)
  • 【单片机】STM32单片机的各个定时器的定时中断程序,标准库,STM32F103

    高级定时器和普通定时器的区别(https://zhuanlan.zhihu.com/p/557896041): TIM1是高级定时器,使用的时钟总线是RCC_APB2Periph_TIM1,和普通定时器不一样。 timer.c timer.h 调用 timer.c timer.h 调用 timer.c timer.h 调用 timer.c timer.h 调用 timer.c timer.h 调用

    2024年02月07日
    浏览(43)
  • 【STM32】STM32单片机结构及部件原理

    STM32是目前比较常见并且多功能的单片机,要想学习STM32,首先要去了解它的基本构成部分以及各部分的原理。 单片机型号:正点原子STM32F103ZET6 目录 STM32内部结构总览图: 2.内部结构解析         1.内核 :STM32F103ZET6采用的是 ARM Cortex-M3 处理器,内核可以理解为单片机 处

    2023年04月08日
    浏览(33)
  • STM32单片机学习3--STM32控制键盘

    单片机型号:STM32F103C8T6 开发环境:Keil5 4种输入模式 上拉输入模式:在默认状态下(GPIO引脚无输入),读取得的GPIO引脚数据为1,高电平(与Vdd相连的为上拉电阻); 下拉输入模式:在默认状态下(GPIO引脚无输入),读取得的GPIO引脚数据为0,低电平(与Vss相连的为下拉电

    2024年02月10日
    浏览(42)
  • 【单片机】STM32单片机,定时器的输入捕获,基于捕获的频率计,STM32F103

    下面的定时器都具有输入捕获能力: 查看另一篇文章:https://qq742971636.blog.csdn.net/article/details/131471539 外部计数频率计的缺点:需要两个定时器配合,最高能测量的频率是否有限制我没具体尝试。 基于捕获的频率计的缺点:最高能测量的频率有限制。 TIM3_CH1 PWM PA6 10KHZ。 输入

    2024年02月14日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包