C++数据结构与算法实现(目录)
答案在此:二叉查找树(binary search tree)(答案)
写在前面
部分内容参《算法导论》
基本接口实现
1 删除
删除值为value的第一个节点
(3)删除叶子节点1
分成下面几个步骤进行:
1 找到z的后继,y是z的后继。这时候可以确定y是不可能有左孩子的。
2 删除y,让y的右孩子x取代自己的位置。删除只有一个孩子的节点上面已经讨论过。文章来源:https://www.toymoban.com/news/detail-690841.html
3 让y的值覆盖z的值。文章来源地址https://www.toymoban.com/news/detail-690841.html
待实现代码
#pragma once
#include <algorithm>
#include <list>
#include <iostream>
#include <stack>
#include <queue>
#include <cstdlib>
#include <ctime>
#include <string>
#include <cassert>
#include <map>
#include <sstream>
using namespace std;
//------下面的代码是用来测试你的代码有没有问题的辅助代码,你无需关注------
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <utility>
using namespace std;
struct Record { Record(void* ptr1, size_t count1, const char* location1, int line1, bool is) :ptr(ptr1), count(count1), line(line1), is_array(is) { int i = 0; while ((location[i] = location1[i]) && i < 100) { ++i; } }void* ptr; size_t count; char location[100] = { 0 }; int line; bool is_array = false; bool not_use_right_delete = false; }; bool operator==(const Record& lhs, const Record& rhs) { return lhs.ptr == rhs.ptr; }std::vector<Record> myAllocStatistic; void* newFunctionImpl(std::size_t sz, char const* file, int line, bool is) { void* ptr = std::malloc(sz); myAllocStatistic.push_back({ ptr,sz, file, line , is }); return ptr; }void* operator new(std::size_t sz, char const* file, int line) { return newFunctionImpl(sz, file, line, false); }void* operator new [](std::size_t sz, char const* file, int line)
{
return newFunctionImpl(sz, file, line, true);
}void operator delete(void* ptr) noexcept { Record item{ ptr, 0, "", 0, false }; auto itr = std::find(myAllocStatistic.begin(), myAllocStatistic.end(), item); if (itr != myAllocStatistic.end()) { auto ind = std::distance(myAllocStatistic.begin(), itr); myAllocStatistic[ind].ptr = nullptr; if (itr->is_array) { myAllocStatistic[ind].not_use_right_delete = true; } else { myAllocStatistic[ind].count = 0; }std::free(ptr); } }void operator delete[](void* ptr) noexcept { Record item{ ptr, 0, "", 0, true }; auto itr = std::find(myAllocStatistic.begin(), myAllocStatistic.end(), item); if (itr != myAllocStatistic.end()) { auto ind = std::distance(myAllocStatistic.begin(), itr); myAllocStatistic[ind].ptr = nullptr; if (!itr->is_array) { myAllocStatistic[ind].not_use_right_delete = true; } else { myAllocStatistic[ind].count = 0; }std::free(ptr); } }
#define new new(__FILE__, __LINE__)
struct MyStruct { void ReportMemoryLeak() { std::cout << "Memory leak report: " << std::endl; bool leak = false; for (auto& i : myAllocStatistic) { if (i.count != 0) { leak = true; std::cout << "leak count " << i.count << " Byte" << ", file " << i.location << ", line " << i.line; if (i.not_use_right_delete) { cout << ", not use right delete. "; } cout << std::endl; } }if (!leak) { cout << "No memory leak." << endl; } }~MyStruct() { ReportMemoryLeak(); } }; static MyStruct my; void check_do(bool b, int line = __LINE__) { if (b) { cout << "line:" << line << " Pass" << endl; } else { cout << "line:" << line << " Ohh! not passed!!!!!!!!!!!!!!!!!!!!!!!!!!!" << " " << endl; exit(0); } }
#define check(msg) check_do(msg, __LINE__);
//------上面的代码是用来测试你的代码有没有问题的辅助代码,你无需关注------
template<typename T>
class binary_search_tree
{
private:
struct tree_node//OK
{
tree_node() :data(T()){}
tree_node(const T& t) :data(t){}
bool exist_parent(void) const { return parent != nullptr; }
T data;
tree_node* parent = nullptr;
tree_node* left = nullptr;
tree_node* right = nullptr;
};
public:
binary_search_tree(void) :m_root(nullptr) {}//默认构造函数:什么也不需要做,因为成员定义的时候就已经初始化了
binary_search_tree(const T*, const int);//从数组构造一颗二叉树
binary_search_tree(const binary_search_tree&);//拷贝构造函数
binary_search_tree& operator = (const binary_search_tree&);
~binary_search_tree(void) { clear(); }//析构函数
public:
int size(void) const;//元素数量
bool empty(void) const { return size() == 0; }//二叉树是否为空
bool insert(const T& data);//插入一个元素
T minmum(void) const;//最小值
T maxmum(void) const;//最大值
bool exists(const T& data) const;//判断元素是否存在
void clear(void);//非递归清空二叉树
void erase(const T& data);
template<typename T>
friend ostream& operator<<(ostream& out, const binary_search_tree<T>& tree);//输出二叉树
void print_pre_order_nonrecursive(void) const;//非递归:先序遍历输出二叉树
void print_in_order_nonrecursive(void) const;//非递归:中序遍历输出二叉树
void print_post_order_nonrecursive(void) const;//非递归:后续遍历输出二叉树
void print_in_order_recursive(std::ostream& os) const;//递归中序遍历输出二叉树
void print_element_order(void) const;//非递归按元素顺序输出二叉树
std::string to_string_in_order(void) const;
int max_length_between_node(void) const;//最大节点距离
int hight(void) const;//树高度
bool operator==(const binary_search_tree& other) const;//两个树相等:结构相同,对应元素相同
bool operator!=(const binary_search_tree& other) const { return !equal(other); }//两个树不相等
bool equal(const binary_search_tree& other) const;//两个树相等:结构相同,对应元素相同
private:
void print_binary_tree(ostream&, const tree_node* bt, int depth) const;//二叉树形式打印二叉树
tree_node* find(const T& data);//查找
tree_node* maxmum(tree_node*) const;//最大节点
tree_node* minmum(tree_node*) const;//最小节点
tree_node* successor(tree_node* t) const;//后继节点
//节点的深度与高度:对于树中相同深度的每个结点来说,它们的高度不一定相同,这取决于每个结点下面的叶结点的深度
int hight(const tree_node* _t) const;
bool equal(const tree_node* lhs, const tree_node* rhs) const;//两个树相等:结构相同,对应元素相同
bool is_node_leaf(const tree_node* node) const;
bool is_left_child(const tree_node* parent, const tree_node* node);
bool is_leaf_node_equal(const tree_node* lhs, const tree_node* rhs) const;
void copy(const binary_search_tree& other);
void copy_node_from(tree_node*& dest, tree_node* dest_parent, const tree_node* from);
void print_in_order_recursive(std::ostream& os
, const tree_node* node) const;//递归中序遍历输出二叉树
void erase_node(tree_node*& pnode);//参数是引用类型,主要是为了:erase_node(m_root) 时,更新m_root;
void erase_and_reconnect(tree_node*& pnode, tree_node* pnode_child);
void update_parent(tree_node* pnode);//删除叶子结点后,让父节点指向空指针
private:
tree_node* left(tree_node* p)
{
assert(p != nullptr);
return p->left;
}
private:
tree_node* m_root = nullptr;//OK
int m_size = 0;
};
template<typename T>
std::string binary_search_tree<T>::to_string_in_order(void) const
{
std::stringstream oss;
this->print_in_order_recursive(oss);
auto str = oss.str();
return str;
}
template<typename T>
binary_search_tree<T>::binary_search_tree(const T* arr, const int length) : binary_search_tree()
{
//(4) your code
//可以使用成员函数insert(const T& data) 来实现这个函数
}
template<typename T>
inline binary_search_tree<T>::binary_search_tree(const binary_search_tree & from) :m_root(nullptr)
{
//(5) your code
//可以使用成员函数copy来实现
}
template<typename T>
binary_search_tree<T>& binary_search_tree<T>::operator=(const binary_search_tree & from)
{
//(5) your code
//可以使用成员函数copy来实现。
//从这里可以看出copy函数应该先用clear成员函数清空自己原有的全部节点
return *this;
}
template<typename T>
void binary_search_tree<T>::copy(const binary_search_tree& other)
{
if (this == &other)//如果拷贝自己,则什么也不做
{
return;//直接返回
}
clear();//先清空自己的内容
m_size = other.m_size;//成员变量赋值
if (other.m_root)//从根节点开始拷贝;递归的拷贝二叉树的每一个节点,照葫芦画瓢
{
copy_node_from(m_root/*需要被创建的节点*/, nullptr/*需要被创建的节点的父节点:用户指向孩子*/, other.m_root/*提供节点存储的数据*/);
}
}
template<typename T>
bool binary_search_tree<T>::insert(const T& data)
{
if (m_root != nullptr)
{
tree_node *fast, *slow, *ptemp;
fast = slow = ptemp = m_root;
while (fast != 0)
{
slow = fast;
if (data < slow->data)
{
fast = slow->left;
}
else if (data > slow->data)
{
fast = slow->right;
}
else
//esle equal do nothing 元素不允许重复
//,元素如果已经存在,什么也不做
{
fast = 0;
return false;//直接退出,不再插入相同的元素的
}
}
if (data < slow->data)
{
slow->left = new tree_node(data);
slow->left->parent = slow;
}
else if (data > slow->data)
{
slow->right = new tree_node(data);
slow->right->parent = slow;
}
else
{
return false;
}
//esle equal do nothing
}
else
{
m_root = new tree_node(data);
}
++m_size;
return true;
}
template<typename T>
int binary_search_tree<T>::hight(void) const
{
return hight(m_root);
}
template<typename T>
int binary_search_tree<T>::hight(const tree_node* _t) const
{
//树的高度,也是树的层树,最大层的层数就是树的高度
//(7) your code 如果没有元素,返回0
// 如果只有一个根节点,没有孩子节点高度为1
// 如果有孩子节点,树的高度就 = 1 + 孩子节点的高度(左右子树高度较大的那一个)
return -1;
}
template<typename T>
bool binary_search_tree<T>::operator==(const binary_search_tree & other) const
{
return this->equal(other);//两个二叉树相等,当且仅当两颗树长的一模一样
}
template<typename T>
bool binary_search_tree<T>::equal(const binary_search_tree & other) const
{
return equal(m_root, other.m_root);
}
template<typename T>
bool binary_search_tree<T>::equal(const tree_node* lhs, const tree_node* rhs) const
{
// 先判断两个树是否为空
//再判断两个树是否都是叶子节点 可以使用 is_leaf_node_equal 成员函数
//再判断两个树的两个左右子树是否同时相等 可以递归调用当前equal函数
//(8) your code
return false;
}
template<typename T>
inline bool binary_search_tree<T>::is_leaf_node_equal(const tree_node* lhs
, const tree_node* rhs) const
{
if (is_node_leaf(lhs) && is_node_leaf(rhs))
{
return lhs->data == rhs->data;
}
return false;
}
template<typename T>
inline bool binary_search_tree<T>::is_node_leaf(const tree_node * node) const
{
return node != nullptr && node->left == nullptr && node->right == nullptr;
}
template<typename T>
///*需要被创建的节点*/, nullptr/*需要被创建的节点*/, other.m_root/*提供节点存储的数据*/
void binary_search_tree<T>::copy_node_from(tree_node *& dest, tree_node* dest_parent, const tree_node * from)
{
//(9) your code 深度拷贝from节点,并切递归拷贝,从而完成整棵树的拷贝
//注意dest节点传递的是引用,这意味着你可以非常方便的对这个地址变量赋值,赋值就会修改传进来的外部变量
//改函数使用递归调用自己的方式,完成整棵树的拷贝。注意对左子树和又子树可能需要分别调用一次递归函数才能完成。
}
template<typename T>
int binary_search_tree<T>::max_length_between_node(void) const
{
int max_length = 0;
const tree_node* ptree = m_root;
list<tree_node*> listNode;
listNode.push_back(m_root);
while (!listNode.empty())
{
auto pnode = listNode.front();
listNode.pop_front();
if (pnode->left != nullptr)
{
listNode.push_back(pnode->left);
}
if (pnode->right != nullptr)
{
listNode.push_back(pnode->right);
}
int tempBetween = hight(pnode->left) + hight(pnode->right);
max_length = std::max<int>(tempBetween, max_length);
}
return max_length;
}
template<typename T>
void binary_search_tree<T>::clear(void)
{
//使用一个辅助队列(或者栈),层次遍历删除所有节点。
//遍历到一个节点A就把孩子BC放到队列,并把这个节点A从队列里取出释放
//(10) your code
}
template<typename T>
void binary_search_tree<T>::print_binary_tree(ostream& out, const tree_node* bt, int depth) const
{
//用右左孩子的方式输出一颗树,先输出右孩子后输出左孩子
if (bt)
{
print_binary_tree(out, bt->right, depth + 1);
if (depth == 0)
{
out << bt->data << endl;
}
else if (depth == 1)
{
out << " --" << bt->data << endl;
}
else
{
int n = depth;
while (--n)
{
cout << " ";
}
out << " --" << bt->data << endl;
}
print_binary_tree(out, bt->left, depth + 1);
}
}
template<typename T>
void binary_search_tree<T>::print_in_order_nonrecursive(void) const
{
cout << "print_in_order_nonrecursive : ";
stack<tree_node*> tempstack;
tree_node* t = m_root;
if (t != NULL)
{
do
{
tempstack.push(t);
t = t->left;
} while (t != NULL);
}
while (!tempstack.empty())
{
tree_node* p = tempstack.top();
cout << p->data << " ";
tempstack.pop();
if (p->right != NULL)
{
p = p->right;
do
{
tempstack.push(p);
p = p->left;
} while (p != NULL);
}
}
cout << endl;
}
template<typename T>
inline void binary_search_tree<T>::print_in_order_recursive(std::ostream & os) const
{
print_in_order_recursive(os, m_root);
}
template<typename T>
void binary_search_tree<T>::print_in_order_recursive(std::ostream & os, const tree_node * node) const
{
if (node == nullptr)
{
return;
}
print_in_order_recursive(os, node->left);
os << node->data << " ";
print_in_order_recursive(os, node->right);
}
template<typename T>
ostream& operator<<(ostream& out, const binary_search_tree<T>& tree)
{
tree.print_binary_tree(out, tree.m_root, 0);
return out;
}
template<typename T>
void binary_search_tree<T>::print_post_order_nonrecursive(void) const
{
//后续序序遍历输出一颗树的全部结点值2,3,1
//广度优先遍历
cout << "print_post_order_nonrecursive : ";
typedef pair<tree_node*, bool> multinode;
stack<multinode> tempstack;
if (m_root)
{
tempstack.push(make_pair(m_root, false));
}
while (!tempstack.empty())
{
multinode m = tempstack.top(); tempstack.pop();
if (m.first->left == NULL && m.first->right == NULL)
{//叶子节点直接输出
cout << m.first->data << " ";
}
else if (m.second == true)
{//所有孩子都遍历完了才会到这一步
cout << m.first->data << " ";
}
else
{//非终结点,并且孩子还没遍历完。
m.second = true; tempstack.push(m);
if (m.first->right != NULL)
{
tempstack.push(make_pair(m.first->right, false));
}
if (m.first->left != NULL)
{
tempstack.push(make_pair(m.first->left, false));
}
}
}
cout << endl;
}
template<typename T>
void binary_search_tree<T>::print_pre_order_nonrecursive(void) const
{
//先序遍历输出一颗树的全部结点值1,2,3,先根遍历
cout << "print_pre_order_nonrecursive : ";
stack<tree_node*> node_stack;
if (m_root)
{
node_stack.push(m_root);
tree_node* t;
while (!node_stack.empty())
{
t = node_stack.top();
node_stack.pop();
cout << t->data << " ";
if (t->right != 0)
{
node_stack.push(t->right);
}
if (t->left != 0)
{
node_stack.push(t->left);
}
}
cout << endl;
}
}
template<typename T>
bool binary_search_tree<T>::exists(const T& data) const
{
bool result = false;
if (m_root)
{
tree_node* pfind = m_root;
while (pfind)
{
if (pfind->data == data)
{
result = true;
break;
}
else if (data < pfind->data)
{
pfind = pfind->left;
}
else
pfind = pfind->right;
}
}
return result;
}
template<typename T>
typename binary_search_tree<T>::tree_node* binary_search_tree<T>::find(const T& data)
{
//(11) your code 利用find,非递归实现:查找某个值是否存在于树中
return nullptr;
}
template<typename T>
int binary_search_tree<T>::size(void) const
{
return m_size;
}
template<typename T>
T binary_search_tree<T>::minmum(void) const
{
//(12) your code 返回最小值 ,请使用成员函数 minmum(tree_node* p) const 来实现
return T();
}
template<typename T>
typename binary_search_tree<T>::tree_node* binary_search_tree<T>::minmum(tree_node* p) const
{
//(13) your code 返回最小值:非递归实现
return nullptr;
}
template<typename T>
T binary_search_tree<T>::maxmum(void) const
{
//(14) your code 返回最大值 ,请使用成员函数 maxmum(tree_node* p) const 来实现
return T();
}
template<typename T>
typename binary_search_tree<T>::tree_node* binary_search_tree<T>::maxmum(tree_node* t) const
{
//(14) your code 返回最大值:非递归实现
return nullptr;
}
template<typename T>
typename binary_search_tree<T>::tree_node* binary_search_tree<T>::successor(tree_node* t) const
{
//(15) your code 找到一个节点的后继结点,这个函数是顺序迭代遍历二叉树的关键函数。
//具体思路为,如果这个节点有右子树,那么右子树的minmum节点就是后继结点。
//如果,这个节点没有右子树,比该节点大的值,一定是往右上方去的第一个节点。
//参考《算法导论》
return nullptr;
}
template<typename T>
void binary_search_tree<T>::print_element_order(void) const
{
cout << "print_element_order by order: ";
if (!empty())
{
//(16) your code 使用后继节点成员函数作为顺序迭代的依据,实现顺序遍历一颗二次函数。
//循环获取后继,只要有后继,就输出这个后继。
cout << endl;
}
}
template<typename T>
void binary_search_tree<T>::erase(const T& data)
{
tree_node* itr = find(data);
assert(itr != nullptr);
--m_size;
if (itr == m_root)
{
/*删除根节点,可能需要释放根节点本身,这个时候m_root的指向需要更新。
* 所以erase_node的参数是引用类型,希望可以在erase_node内部对m_root重新
* 赋值来打到更新根节点指向的目的。
*/
erase_node(m_root);
return;
}
else
{
erase_node(itr);
}
}
template<typename T>
void binary_search_tree<T>::erase_node(tree_node*& pnode)
{
//pnode如果没有parent,那么它就是root,这个时候,删除pnode
// ,无需考虑pnode的parent需要更新的问题。
//只需要处理其孩子替代自己的问题
if (pnode->left == nullptr && pnode->right == nullptr)
{
//叶子结点被删除了的话,被删除节点的父亲应该指向空指针。
update_parent(pnode);//内部会先判断pnode有没有parent
delete pnode;
//这里会更新传进来的引用参数,比如,如果传进来的是m_root的话。
pnode = nullptr;//如果pnode是m_root的话,这句话就会变得必不可少(更新m_root)
}
//如果被删除的节点p只有左孩子:让p的左孩子p_left_child取代自己作为p的parent节点的做孩子
else if (pnode->left != nullptr && pnode->right == nullptr)
{
//让pnode的父亲节点和pnode的孩子建立连接
erase_and_reconnect(pnode, pnode->left);
}
//如果只有右孩子:让右孩子取代自己
else if (pnode->left == nullptr && pnode->right != nullptr)
{
//让pnode的父亲节点和pnode的孩子建立连接
erase_and_reconnect(pnode, pnode->right);
}
else
{
//https://zhuanlan.zhihu.com/p/640863892
//分成下面几个步骤进行:
//1 找到z的后继,y是z的后继。这时候可以确定y是不可能有左孩子的。
//2 删除y,让y的右孩子x取代自己的位置。删除只有一个孩子的节点上面已经讨论过。
//3 让y的值覆盖z的值。
tree_node* psuccessor = successor(pnode);
pnode->data = psuccessor->data;//3 让y的值覆盖z的值。
//2 删除y, y只有一个孩子,只有一个孩子的节点删除此函数的开始部分已经实现了。只需要调用此函数即可。
//(17) your code
}
}
template<typename T>
void binary_search_tree<T>::update_parent(tree_node* pnode)
{//删除叶子结点后,让父节点指向空指针
if (pnode->parent)
{
auto parent = pnode->parent;
is_left_child(parent, pnode) ? (parent->left = nullptr) : (parent->right = nullptr);
}
}
template<typename T>
void binary_search_tree<T>::erase_and_reconnect(tree_node*& delete_pnode, tree_node* pnode_child)
{
//让左孩子取代自己,同时考虑parent不存在的情况下取代自己。
if (delete_pnode->exist_parent())
{
//拿到父节点
auto parent = delete_pnode->parent;
auto is_left = is_left_child(parent, delete_pnode);
//先备份地址,将来用于释放内存
auto pbackup = delete_pnode;
//指向新节点:自己的左孩子替代自己
// reconnect1 ->
delete_pnode = pnode_child;
// <- reconnect2
pnode_child->parent = parent;//指向新的父亲
//删除自己原来的内存
delete pbackup;
//父节点和自己的左孩子建立连接
is_left ? parent->left = delete_pnode : parent->right = delete_pnode;
}
else //删除根节点, 删除根节点可不是删除整个树哦
{
//先备份地址,将来用于释放内存
auto pbackup = delete_pnode;
//指向新节点:自己的左孩子替代自己
delete_pnode = pnode_child;
//删除自己原来的内存
delete pbackup;
}
}
template<typename T>
bool binary_search_tree<T>::is_left_child(const tree_node* parent, const tree_node* pnode)
{
assert(parent != nullptr);
assert(pnode != nullptr);
return (parent->left == pnode);
}
void test_tree(const binary_search_tree<int>& _tree)
{
cout << "test_tree:\n";
cout << _tree;
cout << "tree size : " << _tree.size() << endl;
cout << "tree max length between node " << _tree.max_length_between_node() << endl;
_tree.print_in_order_nonrecursive();
_tree.print_element_order();
_tree.print_post_order_nonrecursive();
_tree.print_pre_order_nonrecursive();
cout << "min element : " << _tree.minmum() << endl;
cout << "max element : " << _tree.maxmum() << "\n" << endl;
}
void test1()
{
binary_search_tree<int> tree;
check(tree.size() == 0);
check(tree.empty());
check(tree.hight() == 0);
}
void test2()
{
int arr[1] = { 1 };
binary_search_tree<int> tree(arr, 1);
check(tree.size() == 1);
check(tree.to_string_in_order() == "1 ");
check(!tree.empty());
}
void test3()
{
int arr[2] = { 1, 2 };
binary_search_tree<int> tree(arr, 2);
check(tree.size() == 2);
check(tree.to_string_in_order() == "1 2 ");
check(!tree.empty());
}
void test4()
{
int arr[2] = { 2, 1 };
binary_search_tree<int> tree(arr, 2);
check(tree.size() == 2);
check(tree.to_string_in_order() == "1 2 ");
check(!tree.empty());
}
void test5()
{
constexpr int length = 3;
int arr[length] = { 1, 2, 3 };
binary_search_tree<int> tree(arr, length);
check(tree.size() == length);
check(tree.to_string_in_order() == "1 2 3 ");
check(!tree.empty());
}
void test6()
{
constexpr int length = 3;
int arr[length] = { 2, 1, 3 };
binary_search_tree<int> tree(arr, length);
check(tree.size() == length);
check(tree.to_string_in_order() == "1 2 3 ");
check(!tree.empty());
}
void test7()
{
constexpr int length = 3;
int arr[length] = { 3, 2, 1, };
binary_search_tree<int> tree(arr, length);
check(tree.size() == length);
check(tree.to_string_in_order() == "1 2 3 ");
check(!tree.empty());
}
void test8()
{
constexpr int length = 3;
int arr[length] = { 3, 1, 2, };
binary_search_tree<int> tree(arr, length);
check(tree.size() == length);
check(tree.to_string_in_order() == "1 2 3 ");
check(!tree.empty());
}
void test9()
{
constexpr int length = 10;
int arr[length] = { 1,3,5,7,9,2,4,6,8,10 };
binary_search_tree<int> tree(arr, length);
check(tree.size() == length);
check(tree.to_string_in_order() ==
"1 2 3 4 5 6 7 8 9 10 ");
check(!tree.empty());
}
void test10()
{
constexpr int length = 10;
int arr[length] = { 2,4,6,8,10,1,3,5,7,9 };
binary_search_tree<int> tree(arr, length);
check(tree.size() == length);
check(tree.to_string_in_order() ==
"1 2 3 4 5 6 7 8 9 10 ");
check(!tree.empty());
}
void test11()
{
constexpr int length = 10;
int arr[length] = { 10,9,8,7,6,5,4,3,2,1 };
binary_search_tree<int> tree(arr, length);
check(tree.size() == length);
check(tree.to_string_in_order() ==
"1 2 3 4 5 6 7 8 9 10 ");
check(!tree.empty());
check(tree.hight() == 10);
}
void test12()
{
constexpr int length = 10;
int arr[length] = { 5,4,3,2,1,10,9,8,7,6 };
binary_search_tree<int> tree(arr, length);
check(tree.size() == length);
check(tree.to_string_in_order() ==
"1 2 3 4 5 6 7 8 9 10 ");
check(!tree.empty());
check(tree.hight() == 6);
}
void test13()
{
constexpr int length = 1;
int arr[length] = { 1 };
binary_search_tree<int> tree(arr, length);
check(tree.minmum() == 1);
check(tree.maxmum() == 1);
check(tree.hight() == 1);
}
void test14()
{
constexpr int length = 2;
int arr[length] = { 1, 2 };
binary_search_tree<int> tree(arr, length);
check(tree.minmum() == 1);
check(tree.maxmum() == 2);
check(tree.hight() == 2);
}
void test15()
{
constexpr int length = 10;
int arr[length] = { 5,4,3,2,1,10,9,8,7,6 };
binary_search_tree<int> tree(arr, length);
check(tree.minmum() == 1);
check(tree.maxmum() == 10);
}
void test16()
{
constexpr int length = 1;
int arr[length] = { 1 };
binary_search_tree<int> tree(arr, length);
check(tree.exists(1));
tree.erase(1);
check(!tree.exists(1));
check(tree.size() == 0);
}
void test17()
{
int arr[] = { 3,2,1 };
binary_search_tree<int> tree(arr, sizeof(arr) / sizeof(int));
check(tree.exists(1));
cout << tree << endl;
tree.erase(2);
cout << tree << endl;
check(!tree.exists(2));
check(tree.size() == 2);
check(!tree.empty());
check(tree.to_string_in_order() == "1 3 ");
}
void test18()
{
constexpr int length = 2;
int arr[length] = { 1, 2 };
binary_search_tree<int> tree(arr, length);
check(tree.exists(1));
check(tree.exists(2));
tree.erase(1);
check(!tree.exists(1));
check(tree.exists(2));
tree.clear();
check(tree.empty());
check(tree.size() == 0);
check(!tree.exists(2));
}
void test19()
{
constexpr int length = 10;
int arr[length] = { 5,3,4,1,2,10,8,9,7,6 };
binary_search_tree<int> tree(arr, length);
cout << tree << endl << "-------------------" << endl;
tree.erase(1);
cout << tree << endl << "-------------------" << endl;
check(tree.to_string_in_order() == "2 3 4 5 6 7 8 9 10 ");
tree.erase(2);
cout << tree << endl << "-------------------" << endl;
check(tree.to_string_in_order() == "3 4 5 6 7 8 9 10 ");
tree.erase(3);
check(tree.to_string_in_order() == "4 5 6 7 8 9 10 ");
cout << tree << endl << "-------------------" << endl;
tree.erase(4);
cout << tree << endl << "-------------------" << endl;
check(tree.to_string_in_order() == "5 6 7 8 9 10 ");
tree.erase(5);
cout << tree << endl << "-------------------" << endl;
check(tree.to_string_in_order() == "6 7 8 9 10 ");
tree.erase(6);
cout << tree << endl << "-------------------" << endl;
check(tree.to_string_in_order() == "7 8 9 10 ");
tree.erase(7);
cout << tree << endl << "-------------------" << endl;
check(tree.to_string_in_order() == "8 9 10 ");
tree.erase(8);
cout << tree << endl << "-------------------" << endl;
check(tree.to_string_in_order() == "9 10 ");
tree.erase(9);
cout << tree << endl << "-------------------" << endl;
check(tree.to_string_in_order() == "10 ");
tree.erase(10);
cout << tree << endl << "-------------------" << endl;
check(tree.to_string_in_order() == "");
}
void test20()
{
constexpr int length = 10;
int arr[length] = { 5,3,4,1,2,10,8,9,7,6 };
binary_search_tree<int> tree(arr, length);
cout << tree << endl << "-------------------" << endl;
tree.erase(10);
cout << tree << endl << "-------------------" << endl;
check(tree.to_string_in_order() == "1 2 3 4 5 6 7 8 9 ");
tree.erase(8);
cout << tree << endl << "-------------------" << endl;
check(tree.to_string_in_order() == "1 2 3 4 5 6 7 9 ");
}
void test21()
{
constexpr int length = 10;
int arr[length] = { 5,3,4,1,2,10,8,9,7,6 };
binary_search_tree<int> tree(arr, length);
cout << tree << endl << "-------------------" << endl;
tree.erase(5);
cout << tree << endl << "-------------------" << endl;
check(tree.to_string_in_order() == "1 2 3 4 6 7 8 9 10 ");
}
void test22()
{
constexpr int length = 10;
int arr[length] = { 2,4,6,8,10,1,3,5,7,9 };
binary_search_tree<int> tree(arr, length);
check(tree.hight() == 6);
tree.erase(1);
check(!tree.exists(1));
tree.erase(2);
check(!tree.exists(2));
tree.erase(3);
check(!tree.exists(3));
tree.erase(4);
check(!tree.exists(4));
tree.erase(5);
check(!tree.exists(5));
check(tree.to_string_in_order() == "6 7 8 9 10 ");
tree.erase(6);
check(!tree.exists(6));
tree.erase(7);
check(!tree.exists(7));
tree.erase(8);
check(!tree.exists(8));
tree.erase(9);
check(!tree.exists(9));
tree.erase(10);
check(!tree.exists(10));
check(tree.empty());
}
void test23()
{
//test equal
int a[3] = { 15, 12, 14 };
binary_search_tree<int> tree(a, 3);
check(tree.hight() == 3);
cout << "tree:\n" << tree << endl;
auto tree2 = tree;
cout << "tree2:\n" << tree2 << endl;
check(tree2.equal(tree));
}
void test24(binary_search_tree<int>& tree)
{
cout << "tree:\n" << tree << endl;
auto tree2 = tree;
cout << "tree2:\n" << tree2 << endl;
check(tree2.equal(tree));
check(tree2 == tree);
tree.clear();
cout << tree << endl;
check(tree2.equal(tree) == false);
check(tree2 != tree);
}
void test25()
{
int a[3] = { 15, 12, 14 };
binary_search_tree<int> tree(a, 3);
tree.print_in_order_recursive(cout);
}
int main()
{
test1();//empty
test2();//test create insert empty size
test3();
test4();
test5();
test6();
test7();
test8();
test9();
test10();
test11();
test12();
test13();
test14();//minmum maxmum
test15();
test16();//exists clear erase size empty
test17();//erase
test18();//erase
test19();//erase
test20();//erase
test21();//erase
test22();//erase
test23();
int maxLength = 0;
int a[100] = { 15, 12, 14, 13, 16
, 34, 23, 24, 22, 21
, 20, 19, 18, 17, 35
, 36, 37, 38, 39, 40
, 41, 0 };
binary_search_tree<int> tree(a, 22);
check(tree.size() == 22);
check(tree.empty() == false);
check(tree.maxmum() == 41);
check(tree.minmum() == 0);
test_tree(tree);
binary_search_tree<int> tree1(a, 3);
test_tree(tree1);
test24(tree);//test copy
test25();//print
return 0;
}
正确输出
line:725 Pass
line:726 Pass
line:727 Pass
line:733 Pass
line:734 Pass
line:735 Pass
line:741 Pass
line:742 Pass
line:743 Pass
line:749 Pass
line:750 Pass
line:751 Pass
line:758 Pass
line:759 Pass
line:760 Pass
line:767 Pass
line:768 Pass
line:769 Pass
line:776 Pass
line:777 Pass
line:778 Pass
line:785 Pass
line:786 Pass
line:787 Pass
line:794 Pass
line:796 Pass
line:797 Pass
line:804 Pass
line:806 Pass
line:807 Pass
line:814 Pass
line:816 Pass
line:817 Pass
line:818 Pass
line:825 Pass
line:827 Pass
line:828 Pass
line:829 Pass
line:836 Pass
line:837 Pass
line:838 Pass
line:845 Pass
line:846 Pass
line:847 Pass
line:854 Pass
line:855 Pass
line:862 Pass
line:864 Pass
line:865 Pass
line:871 Pass
3
--2
--1
3
--1
line:875 Pass
line:876 Pass
line:877 Pass
line:878 Pass
line:885 Pass
line:886 Pass
line:888 Pass
line:889 Pass
line:891 Pass
line:892 Pass
line:893 Pass
--10
--9
--8
--7
--6
5
--4
--3
--2
--1
-------------------
--10
--9
--8
--7
--6
5
--4
--3
--2
-------------------
line:903 Pass
--10
--9
--8
--7
--6
5
--4
--3
-------------------
line:906 Pass
line:908 Pass
--10
--9
--8
--7
--6
5
--4
-------------------
--10
--9
--8
--7
--6
5
-------------------
line:912 Pass
10
--9
--8
--7
--6
-------------------
line:915 Pass
10
--9
--8
--7
-------------------
line:918 Pass
10
--9
--8
-------------------
line:921 Pass
10
--9
-------------------
line:924 Pass
10
-------------------
line:927 Pass
-------------------
line:930 Pass
--10
--9
--8
--7
--6
5
--4
--3
--2
--1
-------------------
--9
--8
--7
--6
5
--4
--3
--2
--1
-------------------
line:940 Pass
--9
--7
--6
5
--4
--3
--2
--1
-------------------
line:943 Pass
--10
--9
--8
--7
--6
5
--4
--3
--2
--1
-------------------
--10
--9
--8
--7
6
--4
--3
--2
--1
-------------------
line:953 Pass
line:960 Pass
line:962 Pass
line:964 Pass
line:966 Pass
line:968 Pass
line:970 Pass
line:971 Pass
line:973 Pass
line:975 Pass
line:977 Pass
line:979 Pass
line:981 Pass
line:982 Pass
line:989 Pass
tree:
15
--14
--12
tree2:
15
--14
--12
line:993 Pass
line:1047 Pass
line:1048 Pass
line:1049 Pass
line:1050 Pass
test_tree:
--41
--40
--39
--38
--37
--36
--35
--34
--24
--23
--22
--21
--20
--19
--18
--17
--16
15
--14
--13
--12
--0
tree size : 22
tree max length between node 14
print_in_order_nonrecursive : 0 12 13 14 15 16 17 18 19 20 21 22 23 24 34 35 36 37 38 39 40 41
print_element_order by order: 0 12 13 14 15 16 17 18 19 20 21 22 23 24 34 35 36 37 38 39 40 41
print_post_order_nonrecursive : 0 13 14 12 17 18 19 20 21 22 24 23 41 40 39 38 37 36 35 34 16 15
print_pre_order_nonrecursive : 15 12 0 14 13 16 34 23 22 21 20 19 18 17 24 35 36 37 38 39 40 41
min element : 0
max element : 41
test_tree:
15
--14
--12
tree size : 3
tree max length between node 2
print_in_order_nonrecursive : 12 14 15
print_element_order by order: 12 14 15
print_post_order_nonrecursive : 14 12 15
print_pre_order_nonrecursive : 15 12 14
min element : 12
max element : 15
tree:
--41
--40
--39
--38
--37
--36
--35
--34
--24
--23
--22
--21
--20
--19
--18
--17
--16
15
--14
--13
--12
--0
tree2:
--41
--40
--39
--38
--37
--36
--35
--34
--24
--23
--22
--21
--20
--19
--18
--17
--16
15
--14
--13
--12
--0
line:1000 Pass
line:1001 Pass
line:1004 Pass
line:1005 Pass
12 14 15 Memory leak report:
No memory leak.
到了这里,关于二叉查找树(binary search tree)(难度7)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!