【学习笔记】求解线性方程组的G-S迭代法

这篇具有很好参考价值的文章主要介绍了【学习笔记】求解线性方程组的G-S迭代法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

求解线性方程组的G-S迭代法

// 运行不成功啊

function [x,k,index]= Gau_Seid(A,b,ep,it_max)
% 求解线性方程组的G-S迭代法,其中
% A为方程组的系数矩阵
% b为方程组的右端项
% ep为精度要求,省缺为1e-5
% it_max为最大迭代次数,省缺为100
% x为方程组的解
% k为迭代次数
if nargin <4 it_max = 100; end
if nargin <3 ep = 1e-5; end
n = length(A);
k = 0;
x = zeros(n,1);
y = zeros(n,1);
index = 1;
while 1
    y = x;
    for i = 1:n
        z = b(i);
        for j = 1:n
            if j~=i
                z = z-A(i,j)*x(j);
            end
        end
        if abs(A(i,j))<1e-10 | k==it_max
            index = 0;
            return;
        end
        z = z/A(i,j);
        x(i) = z;
    end
    if norm(y-x,inf)<ep
        break;
    end
    k = k+1;
end

matlab中调用上述函数结果显示:
【学习笔记】求解线性方程组的G-S迭代法,笔记,matlab,线性代数
哪里出问题了啊?文章来源地址https://www.toymoban.com/news/detail-690864.html

到了这里,关于【学习笔记】求解线性方程组的G-S迭代法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数的学习和整理14: 线性方程组求解的3种方法,重点讲矩阵函数求解

    目录 0 写在前面的一些内容 0.1 学习心得: 0.2 参考其他书籍总结的知识点,对照学习 1 线性方程组求解 1.1 常见的线性方程组如下 1.2 记住常见的 矩阵函数的维数的关系 1.3  需要求解的方程组和矩阵的对应关系,需要先厘清 1.3.1 如果只需要求解x,是类 Ax=b的形式 1.3.2   如

    2024年02月05日
    浏览(59)
  • 数学建模算法(基于matlab和python)之 线性方程组的迭代法(雅可比迭代、高斯-赛德尔迭代)(7/10)

    实验目的及要求: 1、了解各迭代法的基本原理和特点; 2、判断雅克比迭代、高斯-塞德尔迭代对任意初始向量的收敛性; 3、完成雅克比迭代、高斯-塞德尔迭代算法的程序实现。 实验内容: 1、编写雅可比迭代法与高斯-赛德尔迭代法通用子程序,求解下列线性方程组 ,并考

    2024年02月04日
    浏览(51)
  • 【数值计算方法(黄明游)】解线性代数方程组的迭代法(一):向量、矩阵范数与谱半径【理论到程序】

       注意:速读可直接跳转至“4、知识点总结”及“5、计算例题”部分   当涉及到线性代数和矩阵理论时, 向量、矩阵范数以及谱半径 是非常重要的概念,下面将详细介绍这些内容: a. 定义及性质   考虑一个 n n n 维向量 x x x ,定义一个实值函数 N ( x ) N(x) N ( x ) ,

    2024年01月25日
    浏览(47)
  • 线性方程组的求解

    克莱姆法则 求解线性方程组有一种比较简单易行的方法就是用克莱姆法则 通过行列式的计算 以解出方程,下面给出行列式解方程的代码并分析优缺点; 对于一个n元一次方程组,如果可以将其化为n阶行列式就能使用克莱姆法则;例如: 有 D=    用(b1,b2,...bn)T替换D的第一列

    2024年02月05日
    浏览(42)
  • 数值分析——线性方程组求解

    清理磁盘的时候偶然发现大二下数值分析的实验作业还在,本着在丢弃之前可以放在网上以备不时之需的原则,我便发了上来。 分别用直接法、Jacobi迭代法、Gauss-Seidel迭代法求解下列线性方程组AX = b,其中A为五对角矩阵(n=20),b是除第一个分量是1外,其他分量都是0的列向量

    2024年02月05日
    浏览(43)
  • MATLAB-线性方程组求解

    线性方程组是线性代数中的重要内容之一,其理论发展的最为完善。MATLAB中包含多种处理线性方程组的命令,下面进行详细介绍。 对于形如AX=B的方程组来说,假设其系数矩阵A是m×n的矩阵,根据其维数可以将方程组分以下3种情况。 1)若m=n,则为恰定方程组,即方程数等于未知

    2023年04月16日
    浏览(46)
  • 数值分析·学习 | 解线性方程组的直接方法(高斯消去法以及LU求解)matlab实现

    目录 一、前言: 二、算法描述: 三、实现代码: 1、高斯消去法: 2、高斯消去法-列主元消去法: 3、LU分解: 4、求逆矩阵: 四、总结: 个人学习内容分享 1、高斯消去法:         设有线性方程组         或写为矩阵形式

    2024年02月05日
    浏览(80)
  • 线性代数:齐次线性方程组学习笔记

    齐次线性方程组是指所有方程的常数项均为零的线性方程组,即形如 A x = 0 Ax=0 A x = 0 的方程组。 其中,矩阵 A A A 是一个 m × n m times n m × n 的矩阵,向量 x x x 是一个 n n n 维列向量, 0 mathbf{0} 0 是一个 m m m 维零向量。 齐次线性方程组有以下性质: 1. 性质1 齐次线性方程组的

    2024年01月20日
    浏览(50)
  • MATLAB 之 线性方程组求解

    在 MATLAB 中,关于线性方程组的解法一般分为两类:一类是直接法,就是在没有舍入误差的情况下,通过有限步的矩阵初等运算来求得方程组的解;另一类是迭代法,就是先给定一个解的初始值,然后按照一定的迭代算法进行逐步逼近,求出更精确的近似解。 线性方程组的直

    2024年02月08日
    浏览(51)
  • 线性代数代码实现(七)求解线性方程组(C++)

    前言:         上次博客,我写了一篇关于定义矩阵除法并且代码的文章。矩阵除法或许用处不大,不过在那一篇文章中,我认为比较好的一点是告诉了大家一种计算方法,即:若矩阵  已知且可逆,矩阵  已知,并且  ,求解矩阵 B 。我认为这种初等行变换的方法还是挺

    2023年04月23日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包