Bert和LSTM:情绪分类中的表现

这篇具有很好参考价值的文章主要介绍了Bert和LSTM:情绪分类中的表现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、说明

        这篇文章的目的是评估和比较 2 种深度学习算法(BERT 和 LSTM)在情感分析中进行二元分类的性能。评估将侧重于两个关键指标:准确性(衡量整体分类性能)和训练时间(评估每种算法的效率)。

二、数据

        为了实现这一目标,我使用了IMDB数据集,其中包括50,000条电影评论。数据集平均分为 25,000 条正面评论和 25,000 条负面评论,使其适用于训练和测试二进制情绪分析模型。若要获取数据集,请转到以下链接:

50K电影评论的IMDB数据集

大型影评数据集

www.kaggle.com

        下图显示了数据集的五行。我给积极情绪分配了 1,给消极情绪分配了 0。

Bert和LSTM:情绪分类中的表现,人工智能,自然语言处理,bert

 

三、算法

        1. 长短期记忆(LSTM):它是一种循环神经网络(RNN),旨在处理顺序数据。它可以通过使用存储单元和门来捕获长期依赖关系。

        2. BERT(来自变压器的双向编码器表示):它是一种预先训练的基于变压器的模型,使用自监督学习方法。利用双向上下文来理解句子中单词的含义。

        -配置

        对于 LSTM,模型采用文本序列以及每个序列的相应长度作为输入。它嵌入文本(嵌入维度 = 20),通过 LSTM 层(大小 = 64)处理文本,通过 ReLU 激活的全连接层传递最后一个隐藏状态,最后应用 S 形激活以生成 0 到 1 之间的单个输出值。(周期数:10,学习率:0.001,优化器:亚当)

        对于BERT,我使用了DistilBertForSequenceClassification,它基于DistilBERT架构。DistilBERT是原始BERT模型的较小,蒸馏版本。它旨在具有较少数量的参数并降低计算复杂性,同时保持相似的性能水平。(周期数:3,学习率:5e-5,优化器:亚当)

四、LSTM 代码

!pip install torchtext

!pip install portalocker>=2.0.0

import torch
import torch.nn as nn

from torchtext.datasets import IMDB
from torch.utils.data.dataset import random_split

# Step 1: load and create the datasets

train_dataset = IMDB(split='train')
test_dataset = IMDB(split='test')

# Set random number to 123 to compare with BERT model
torch.manual_seed(123)
train_dataset, valid_dataset = random_split(
    list(train_dataset), [20000, 5000])

## Step 2: find unique tokens (words)
import re
from collections import Counter, OrderedDict

token_counts = Counter()

def tokenizer(text):
    text = re.sub('<[^>]*>', '', text)
    emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text.lower())
    text = re.sub('[\W]+', ' ', text.lower()) +\
        ' '.join(emoticons).replace('-', '')
    tokenized = text.split()
    return tokenized


for label, line in train_dataset:
    tokens = tokenizer(line)
    token_counts.update(tokens)


print('Vocab-size:', len(token_counts))

## Step 3: encoding each unique token into integers
from torchtext.vocab import vocab

sorted_by_freq_tuples = sorted(token_counts.items(), key=lambda x: x[1], reverse=True)
ordered_dict = OrderedDict(sorted_by_freq_tuples)

vocab = vocab(ordered_dict)

'''
The special tokens "<pad>" and "<unk>" are inserted into the vocabulary using vocab.insert_token("<pad>", 0) and vocab.insert_token("<unk>", 1) respectively.
The index 0 is assigned to "<pad>" token, which is typically used for padding sequences.
The index 1 is assigned to "<unk>" token, which represents unknown or out-of-vocabulary tokens.


vocab.set_default_index(1) sets the default index of the vocabulary to 1, which corresponds to the "<unk>" token.
This means that if a token is not found in the vocabulary, it will be mapped to the index 1 by default.
'''

vocab.insert_token("<pad>", 0)
vocab.insert_token("<unk>", 1)
vocab.set_default_index(1)

print([vocab[token] for token in ['this', 'is', 'an', 'example']])

'''
The IMDB class in datatext contains 1 = negative and 2 = positive
'''

'''
The label_pipeline lambda function takes a label value x as input.
It checks if the label value x is equal to 2 using the comparison x == 2.
If the condition is true, it returns a float value of 1.0. This implies that the label is positive.
If the condition is false (i.e., the label value is not equal to 2), it returns a float value of 0.0. This implies that the label is negative.
'''

text_pipeline = lambda x: [vocab[token] for token in tokenizer(x)]
label_pipeline = lambda x: 1. if x == 2 else 0

'''
This line suggests that the subsequent computations and tensors will be moved to the specified CUDA device for processing,
taking advantage of GPU acceleration if available.
'''

device = torch.device("cuda:0")

## Step 3-B: wrap the encode and transformation function

'''
Instead of loading the whole reviews into memory which is way too expensive for the computer,
you can load a batch for manuy times which requires way less memory as compared to loading the complete data set.
Another reason that we use batch is that if we load the whole dataset at once, the deep learning algorithm(may be a neural network)
has to store errors values for all data points in the memory and this will cause a great decrease in speed of training.
With batches, the model updates the parameters(weights and bias) only after passing through the whole data set.
'''

def collate_batch(batch):
    label_list, text_list, lengths = [], [], []
    for _label, _text in batch:
        label_list.append(label_pipeline(_label))
        processed_text = torch.tensor(text_pipeline(_text),
                                      dtype=torch.int64)
        text_list.append(processed_text)
        lengths.append(processed_text.size(0))

    ## Convert lists to tensors
    label_list = torch.tensor(label_list)
    lengths = torch.tensor(lengths)

    ## pads the text sequences in text_list to have the same length by adding padding tokens.
    padded_text_list = nn.utils.rnn.pad_sequence(
        text_list, batch_first=True)
    return padded_text_list.to(device), label_list.to(device), lengths.to(device)

## Take a small batch to check if the wrapping works

from torch.utils.data import DataLoader
dataloader = DataLoader(train_dataset, batch_size=4, shuffle=False, collate_fn=collate_batch)
text_batch, label_batch, length_batch = next(iter(dataloader))
print(text_batch)
print(label_batch)
print(length_batch)
print(text_batch.shape)

## Step 4: batching the datasets

batch_size = 32

train_dl = DataLoader(train_dataset, batch_size=batch_size,
                      shuffle=True, collate_fn=collate_batch)
valid_dl = DataLoader(valid_dataset, batch_size=batch_size,
                      shuffle=False, collate_fn=collate_batch)
test_dl = DataLoader(test_dataset, batch_size=batch_size,
                     shuffle=False, collate_fn=collate_batch)

print(len(list(train_dl.dataset)))
print(len(list(valid_dl.dataset)))
print(len(list(test_dl.dataset)))

'''
the code defines an RNN model that takes encoded text inputs,
processes them through an embedding layer and an LSTM layer,
and produces a binary output using fully connected layers and a sigmoid activation function.
The model is initialized with specific parameters and moved to the specified device for computation.
'''


class RNN(nn.Module):
    def __init__(self, vocab_size, embed_dim, rnn_hidden_size, fc_hidden_size):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size,
                                      embed_dim,
                                      padding_idx=0)
        self.rnn = nn.LSTM(embed_dim, rnn_hidden_size,
                           batch_first=True)
        self.fc1 = nn.Linear(rnn_hidden_size, fc_hidden_size)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(fc_hidden_size, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, text, lengths):
        out = self.embedding(text)
        out = nn.utils.rnn.pack_padded_sequence(out, lengths.cpu().numpy(), enforce_sorted=False, batch_first=True)
        out, (hidden, cell) = self.rnn(out)
        out = hidden[-1, :, :]
        out = self.fc1(out)
        out = self.relu(out)
        out = self.fc2(out)
        out = self.sigmoid(out)
        return out

vocab_size = len(vocab)
embed_dim = 20
rnn_hidden_size = 64
fc_hidden_size = 64

torch.manual_seed(123)
model = RNN(vocab_size, embed_dim, rnn_hidden_size, fc_hidden_size)
model = model.to(device)

def train(dataloader):
    model.train()
    total_acc, total_loss = 0, 0
    for text_batch, label_batch, lengths in dataloader:
        optimizer.zero_grad()
        pred = model(text_batch, lengths)[:, 0]
        loss = loss_fn(pred, label_batch)
        loss.backward()
        optimizer.step()
        total_acc += ((pred>=0.5).float() == label_batch).float().sum().item()
        total_loss += loss.item()*label_batch.size(0)
    return total_acc/len(dataloader.dataset), total_loss/len(dataloader.dataset)

def evaluate(dataloader):
    model.eval()
    total_acc, total_loss = 0, 0
    with torch.no_grad():
        for text_batch, label_batch, lengths in dataloader:
            pred = model(text_batch, lengths)[:, 0]
            loss = loss_fn(pred, label_batch.float())  # Convert label_batch to Float
            total_acc += ((pred >= 0.5).float() == label_batch).float().sum().item()
            total_loss += loss.item() * label_batch.size(0)


    return total_acc/len(list(dataloader.dataset)),\
           total_loss/len(list(dataloader.dataset))

import time
start_time = time.time()

loss_fn = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

num_epochs = 10

torch.manual_seed(123)

for epoch in range(num_epochs):
    acc_train, loss_train = train(train_dl)
    acc_valid, loss_valid = evaluate(valid_dl)
    print(f'Epoch {epoch} accuracy: {acc_train:.4f} val_accuracy: {acc_valid:.4f}')
    print(f'Time elapsed: {(time.time() - start_time)/60:.2f} min')
print(f'Total Training Time: {(time.time() - start_time)/60:.2f} min')

acc_test, _ = evaluate(test_dl)
print(f'test_accuracy: {acc_test:.4f}')

"""### Test with new movie reviews of Spider-Man: Across the Spider-Verse (2023)"""

def collate_single_text(text):
    processed_text = torch.tensor(text_pipeline(text), dtype=torch.int64)
    length = processed_text.size(0)
    padded_text = nn.utils.rnn.pad_sequence([processed_text], batch_first=True)
    return padded_text.to(device), length

text = "It is the first marvel movie to make me shed a tear. It has heart, it feels so alive with it's conveyance of emotions and feelings, it uses our nostalgia for the first movie AGAINST US it is on a completely new level of animation, there is a twist on every turn you make while watching this movie. "
padded_text, length = collate_single_text(text)
padded_text = padded_text.to(device)

model.eval()  # Set the model to evaluation mode
with torch.no_grad():
    encoded_text = padded_text.to(device)  # Move the encoded_text tensor to the CUDA device

    lengths = torch.tensor([len(encoded_text)])  # Compute the length of the text sequence

    output = model(encoded_text, lengths)  # Pass the lengths argument
    probability = output.item()  # Obtain the predicted probability
    if probability >= 0.5:
        prediction = "Positive"
    else:
        prediction = "Negative"

print(f"Text: {text}")
print(f"Prediction: {prediction} (Probability: {probability})")

text = "This movie was very boring and garbage this is why Hollywood has zero imagination. They rewrote Spiderman as Miles Morales so that they can fit the DEI agenda which was more important than time. "
padded_text, length = collate_single_text(text)
padded_text = padded_text.to(device)

model.eval()  # Set the model to evaluation mode
with torch.no_grad():
    encoded_text = padded_text.to(device)  # Move the encoded_text tensor to the CUDA device

    lengths = torch.tensor([len(encoded_text)])  # Compute the length of the text sequence

    output = model(encoded_text, lengths)  # Pass the lengths argument
    probability = output.item()  # Obtain the predicted probability
    if probability >= 0.5:
        prediction = "Positive"
    else:
        prediction = "Negative"

print(f"Text: {text}")
print(f"Prediction: {prediction} (Probability: {probability})")

五、BERT代码

!pip install transformers

import gzip
import shutil
import time

import pandas as pd
import requests
import torch
import torch.nn.functional as F
import torchtext

import transformers
from transformers import DistilBertTokenizerFast
from transformers import DistilBertForSequenceClassification

torch.backends.cudnn.deterministic = True
RANDOM_SEED = 123
torch.manual_seed(RANDOM_SEED)
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

NUM_EPOCHS = 3

path = '/content/drive/MyDrive/data/movie_data.csv'

df = pd.read_csv(path)

df.head()

df.shape

train_texts = df.iloc[:35000]['review'].values
train_labels = df.iloc[:35000]['sentiment'].values

valid_texts = df.iloc[35000:40000]['review'].values
valid_labels = df.iloc[35000:40000]['sentiment'].values

test_texts = df.iloc[40000:]['review'].values
test_labels = df.iloc[40000:]['sentiment'].values

tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')

train_encodings = tokenizer(list(train_texts), truncation=True, padding=True)
valid_encodings = tokenizer(list(valid_texts), truncation=True, padding=True)
test_encodings = tokenizer(list(test_texts), truncation=True, padding=True)

train_encodings[0]

class IMDbDataset(torch.utils.data.Dataset):
    def __init__(self, encodings, labels):
        self.encodings = encodings
        self.labels = labels

    def __getitem__(self, idx):
        item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
        item['labels'] = torch.tensor(self.labels[idx])
        return item

    def __len__(self):
        return len(self.labels)


train_dataset = IMDbDataset(train_encodings, train_labels)
valid_dataset = IMDbDataset(valid_encodings, valid_labels)
test_dataset = IMDbDataset(test_encodings, test_labels)

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True)
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=16, shuffle=False)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=16, shuffle=False)

model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
model.to(DEVICE)
model.train()

optim = torch.optim.Adam(model.parameters(), lr=5e-5)

def compute_accuracy(model, data_loader, device):
    with torch.no_grad():
        correct_pred, num_examples = 0, 0

        for batch_idx, batch in enumerate(data_loader):

        ### Prepare data
            input_ids = batch['input_ids'].to(device)
            attention_mask = batch['attention_mask'].to(device)
            labels = batch['labels'].to(device)
            outputs = model(input_ids, attention_mask=attention_mask)
            logits = outputs['logits']
            predicted_labels = torch.argmax(logits, 1)
            num_examples += labels.size(0)
            correct_pred += (predicted_labels == labels).sum()

        return correct_pred.float()/num_examples * 100

start_time = time.time()

for epoch in range(NUM_EPOCHS):

    model.train()

    for batch_idx, batch in enumerate(train_loader):

        ### Prepare data
        input_ids = batch['input_ids'].to(DEVICE)
        attention_mask = batch['attention_mask'].to(DEVICE)
        labels = batch['labels'].to(DEVICE)

        ### Forward
        outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
        loss, logits = outputs['loss'], outputs['logits']

        ### Backward
        optim.zero_grad()
        loss.backward()
        optim.step()

        ### Logging
        if not batch_idx % 250:
            print (f'Epoch: {epoch+1:04d}/{NUM_EPOCHS:04d} | '
                   f'Batch {batch_idx:04d}/{len(train_loader):04d} | '
                   f'Loss: {loss:.4f}')

    model.eval()

    with torch.set_grad_enabled(False):
        print(f'Training accuracy: '
              f'{compute_accuracy(model, train_loader, DEVICE):.2f}%'
              f'\nValid accuracy: '
              f'{compute_accuracy(model, valid_loader, DEVICE):.2f}%')

    print(f'Time elapsed: {(time.time() - start_time)/60:.2f} min')

print(f'Total Training Time: {(time.time() - start_time)/60:.2f} min')
print(f'Test accuracy: {compute_accuracy(model, test_loader, DEVICE):.2f}%')

六、结果

Bert和LSTM:情绪分类中的表现,人工智能,自然语言处理,bert

 

七、为什么BERT的性能优于LSTM?

        BERT之所以获得高准确率,有几个原因:
        1)BERT通过考虑给定单词两侧的周围单词来捕获单词的上下文含义。这种双向方法使模型能够理解语言的细微差别并有效地捕获单词之间的依赖关系。

        2)BERT采用变压器架构,可有效捕获顺序数据中的长期依赖关系。转换器采用自我注意机制,使模型能够权衡句子中不同单词的重要性。这种注意力机制有助于BERT专注于相关信息,从而获得更好的表示和更高的准确性。

        3)BERT在大量未标记的数据上进行预训练。这种预训练允许模型学习一般语言表示,并获得对语法、语义和世界知识的广泛理解。通过利用这些预训练的知识,BERT可以更好地适应下游任务并实现更高的准确性。

八、结论

        与 LSTM 相比,BERT 确实需要更长的时间来微调,因为它的架构更复杂,参数空间更大。但同样重要的是要考虑到BERT在许多任务中的性能优于LSTM。 达门·文章来源地址https://www.toymoban.com/news/detail-690910.html

到了这里,关于Bert和LSTM:情绪分类中的表现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能中的文本分类:技术突破与实战指导

    在本文中,我们全面探讨了文本分类技术的发展历程、基本原理、关键技术、深度学习的应用,以及从RNN到Transformer的技术演进。文章详细介绍了各种模型的原理和实战应用,旨在提供对文本分类技术深入理解的全面视角。 关注TechLead,分享AI全维度知识。作者拥有10+年互联网

    2024年02月05日
    浏览(36)
  • 【Elsevier旗下】1区SCI,5天见刊!稳定检索36年,大数据、人工智能、机器学习、语音、语言、会话、情绪识别等领域

    近日 国自然预计将在下周8月20日之前公布 ,想必申请过国自然基金作者都知道,需要有研究基础,说白了就是需要有文章支持。那么稿子写好了,选择一本靠谱优质期刊也是一门学问。 本期小编推荐2本Elsevier 旗下审稿快刊,各项指标优秀,实为评职晋升、申报基金之首选

    2024年02月13日
    浏览(49)
  • 人工智能(Pytorch)搭建模型2-LSTM网络实现简单案例

     本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052  大家好,我是微学AI,今天给大家介绍一下人工智能(Pytorch)搭建模型2-LSTM网络实现简单案例。主要分类三个方面进行描述:Pytorch搭建神经网络的简单步骤、LSTM网络介绍、Pytorch搭建LSTM网络的代码实战 目录

    2024年02月03日
    浏览(63)
  • 人工智能(pytorch)搭建模型16-基于LSTM+CNN模型的高血压预测的应用

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型16-基于LSTM+CNN模型的高血压预测的应用,LSTM+CNN模型搭建与训练,本项目将利用pytorch搭建LSTM+CNN模型,涉及项目:高血压预测,高血压是一种常见的性疾病,早期预测和干预对于防止其发展至严重疾病至关重要

    2024年02月12日
    浏览(72)
  • 人工智能分类算法概述

    人工智能分类算法是用于将数据划分为不同类别的算法。这些算法通过学习数据的特征和模式,将输入数据映射到相应的类别。分类算法在人工智能中具有广泛的应用,如图像识别、语音识别、文本分类等。以下是几种常见的人工智能分类算法的详细讲解过程: 决策树 决策

    2024年04月11日
    浏览(44)
  • 人工智能文本分类

    在本文中,我们全面探讨了文本分类技术的发展历程、基本原理、关键技术、深度学习的应用,以及从RNN到Transformer的技术演进。文章详细介绍了各种模型的原理和实战应用,旨在提供对文本分类技术深入理解的全面视角。 文本分类作为人工智能领域的一个重要分支,其价值

    2024年02月03日
    浏览(47)
  • 【人工智能】基于分类算法的学业预警

    党的二十大报告指出:“我们要坚持教育优先发展、科技自立自强、人才引领驱动,加快建设教育强国、科技强国、人才强国,坚持为党育人、为国育才,全面提高人才自主培养质量,着力造就拔尖创新人才,聚天下英才而用之”。学生是祖国的未来,如何培养出优秀的接班

    2024年01月22日
    浏览(50)
  • 基于残差网络的人工智能文本分类方法

    作者:禅与计算机程序设计艺术 引言 1.1. 背景介绍 随着互联网和电子商务的快速发展,文本分类技术在自然语言处理领域取得了重要地位。在实际应用中,人们需要处理大量的文本数据,例如新闻报道、社交媒体内容、公司业务邮件等。自动化文本分类方法可以帮助人们快

    2024年02月07日
    浏览(36)
  • 【人工智能Ⅱ】实验2:VGG图像分类

    实验2:VGG图像分类 一:实验目的与要求 1:掌握VGG网络的原理与结构。 2:学会利用VGG网络建立训练模型,并对模型进行评估。 3:学会使用VGG网络进行分类。 二:实验内容 1:用VGG网络对自选图像数据集进行多分类预测。 2:应用图像增强方法进行数据集的扩充。 3:调整

    2024年04月26日
    浏览(43)
  • 【人工智能】监督学习、分类问题、决策树、信息增益

    什么是决策树 —— 基本概念 非叶节点:一个属性上的测试,每个分枝代表该测试的输出 叶节点:存放一个类标记 规则:从根节点到叶节点的一条属性取值路径 模型训练:从已有数据中生成一棵决策树 分裂数据的特征,寻找决策类别的路径 相同的数据,根据不同的特征顺

    2024年02月16日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包