NLP:生成熟悉NLP开源工具,如NLTK、 HanLP等,并搜寻、下载和熟悉PKU、 CoreNLP, LTP MSR, AS CITYI 等语料库。

这篇具有很好参考价值的文章主要介绍了NLP:生成熟悉NLP开源工具,如NLTK、 HanLP等,并搜寻、下载和熟悉PKU、 CoreNLP, LTP MSR, AS CITYI 等语料库。。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、NLTK

二、HanLP

三、PKU

四、CoreNLP

五、LTP

六、MSR


一、NLTK

        NLTK(Natural Language Toolkit)是Python的一个开源自然语言处理库。它提供了大量已经预处理好的文本数据和语料库,以及一些常用的文本处理算法和NLP工具。例如,NLTK提供了分词、词性标注、命名实体识别、情感分析等功能。下面是一个使用NLTK进行词性标注的示例:

​import nltk
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag

sentence = "The quick brown fox jumps over the lazy dog."
tokens = word_tokenize(sentence)
tags = pos_tag(tokens)

print(tags)

# Output: [('The', 'DT'), ('quick', 'JJ'), ('brown', 'NN'), ('fox', 'NN'), ('jumps', 'VBZ'), ('over', 'IN'), ('the', 'DT'), ('lazy', 'JJ'), ('dog', 'NN'), ('.', '.')]
  1. NLTK还提供了大量的语料库供学习和研究使用。其中一些语料库包括:
  • Gutenberg语料库:包含超过25,000个免费电子书的文本。
  • Brown语料库:包含不同类型的约50万词语言样本,用于研究自然语言处理中的语言变体。
  • Reuters语料库:包含10,788个新闻文档,包括118个主题类别。
  • Movie Reviews语料库:包含1000个影评文本,每个文本都被分配了一个积极或消极的标签。

二、HanLP

        HanLP是由中国科学院计算技术研究所自然语言处理与社会人文计算实验室开发的开源自然语言处理工具包。它支持中文分词、词性标注、命名实体识别、依存句法分析、关键字提取等功能。下面是一个使用HanLP进行中文分词的示例:

from pyhanlp import *

text = "自然语言处理是一项重要的人工智能技术。"

segmenter = HanLP.newSegment().enableCustomDictionary(False)
words = segmenter.seg(text)

for word in words:
    print(word.word)

# Output: 自然语言 处理 是 一项 重要 的 人工智能 技术 。
  • 中华新闻语料库:包含超过350万条新闻文本。
  • 汉语聊天语料库:包含超过500万条即时通信文本。
  • 人民日报语料库:包含1964年至2018年的人民日报文本。

三、PKU

  1. PKU语料库是一个非常受欢迎的中文自然语言处理语料库,包含了大量的文本数据和其它语言处理资源。它包括中文分词、词性标注、命名实体识别、依存句法分析等功能。下面是一个使用PKU进行中文分词的示例:
import pkuseg

text = "自然语言处理是一项重要的人工智能技术。"

seg = pkuseg.pkuseg()
words = seg.cut(text)

print(words)

# Output: ['自然语言', '处理', '是', '一项', '重要', '的', '人工智能', '技术', '。']
  1. PKU语料库包括:
  • PKU人民日报中文语料库:包含1998年至2010年的人民日报文本,包括词性标注、命名实体识别等。
  • 新闻语料库:包含超过1000万条新闻文本,涵盖超过20年的时间范围。

四、CoreNLP

  1. CoreNLP是由斯坦福大学自然语言处理小组开发的一款开源自然语言处理工具包。它支持多种语言,包括英语、中文、阿拉伯语等,可以进行分词、词性标注、命名实体识别、句法分析、情感分析等任务。下面是一个使用CoreNLP进行英文分词的示例:
import json
from pycorenlp import StanfordCoreNLP

nlp = StanfordCoreNLP('http://localhost:9000')

text = "The quick brown fox jumps over the lazy dog."
output = nlp.annotate(text, properties={
    'annotators': 'tokenize',
    'outputFormat': 'json'
})

tokens = [token['word'] for sentence in output['sentences'] for token in sentence['tokens']]

print(tokens)

# Output: ['The', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog', '.']
  • Penn Treebank语料库:包含了多种类型的英文文本数据,用于研究句法分析和其他自然语言处理任务。
  • OntoNotes语料库:包含了多种语言的文本数据,用于研究命名实体识别、语义角色标注等任务。

五、LTP

        LTP(Language Technology Platform)是由哈工大社会计算与信息检索研究中心开发的一款面向中文的开源自然语言处理工具包。它支持中文分词、词性标注、命名实体识别、依存句法分析、语义角色标注等任务。下面是一个使用LTP进行中文分词的示例:文章来源地址https://www.toymoban.com/news/detail-691560.html

from pyltp import Segmentor

segmentor = Segmentor()
segmentor.load("/path/to/your/model")
text = "自然语言处理是一项重要的人工智能技术。"
words = segmentor.segment(text)

print(words)

# Output: ['自然语言', '处理', '是', '一项', '重要', '的', '人工智能', '技术', '。']
  • SIGHAN2005语料库:包含多种类型的中文文本数据,用于研究中文分词、词性标注等任务。
  • CTB5.1语料库:包含超过17万个中文句子,用于研究句法分析和其他自然语言处理任务。

六、MSR

  1. MSR是由微软亚洲研究院开发的一款面向中文的自然语言处理工具集。它可以进行中文分词、词性标注、命名实体识别、依存句法分析等任务,并且提供了多种语言的接口。下面是一个使用MSR进行中文分词的示例:
import msr

text = "自然语言处理是一项重要的人工智能技术。"
seg = msr.segment(text)

print(seg)

# Output: ['自然语言', '处理', '是', '一项', '重要', '的', '人工智能', '技术', '。']
  • MSR中文分词语料库:包含100万个中文句子,用于研究中文分词等任务。
  • MSR实体识别语料库:包含大量实体标注数据,用于研究命名实体识别等任务。

到了这里,关于NLP:生成熟悉NLP开源工具,如NLTK、 HanLP等,并搜寻、下载和熟悉PKU、 CoreNLP, LTP MSR, AS CITYI 等语料库。的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Linux NLTK 安装下载nltk_data

         已经成功安装anaconda环境和nltk。 anaconda环境和nltk可参考下面链接进行配置,nltk_data参考本文进行。 Linux安装Anaconda和配置nltk环境_cetons7安装nltk-CSDN博客         推荐离线安装,亲测成功!                 可以到GitHub上下载---GitHub - nltk/nltk_data: NLTK Data,github上需

    2024年01月20日
    浏览(26)
  • 带你熟悉NLP预训练模型:BERT

    本文分享自华为云社区《【昇思技术公开课笔记-大模型】Bert理论知识》,作者: JeffDing。 语言模型演变经历的几个阶段 word2vec/Glove将离散的文本数据转换为固定长度的静态词向量,后根据下游任务训练不同的语言模型 ELMo预训练模型将文本数据结合上下文信息,转换为动态

    2024年01月22日
    浏览(72)
  • 自然语言处理NLP:一文了解NLP自然语言处理技术,NLP在生活中的应用,图导加深了解,NLP语料库,NLP开源工具

    目录 1.自然语言处理NLP 1.1 NLP中英对照(双份) 1.2 相关文章  2.NLP语料库

    2024年02月09日
    浏览(61)
  • 【自然语言处理】3.1NLTK工具集

    NLTK为自然语言处理集 多语料库(Corpora) 词典资源(Lexicon),如WordNet 基本自然语言处理工具集 标记解析(Tokenization) 词干提取(Stemming) 词性标注(POS Tagging) 句法分析(Syntactic Parsing) 安装(command+R), pip install nltk 下载 nltk.download() 方法 停用词 因为语义不重要(如冠词)

    2024年02月11日
    浏览(54)
  • 【多模态】2、NLTK | 自然语言处理工具包简介

    NLTK 全称是 Natural Language Toolkit,自然语言处理工具包,是 NLP 领域中常用的 python 库 NLTK 的作用: 语料库 文本预处理:文本清洗、文本标准化 分词:将一段连续的文本划分为单独的词语或符号 … NLTK 如何使用: 但一般下载不下来,会出现如下报错: 可以去官网下载,并注释

    2024年02月16日
    浏览(42)
  • 如何使用微软的开源工具生成 SBOM

    SBOM (软件物料清单)通过列出您的代码所依赖的软件包和供应商来帮助您了解您的软件供应链。SBOM 正迅速获得发展势头,作为在现实世界供应链受到重大攻击后帮助提高安全性的一种方式。 SBOM 的主要支持者之一是微软,该公司早在 2021 年 10 月就发布了针对他们这一代的

    2024年02月02日
    浏览(26)
  • 字符串随机生成工具(开源)-Kimen(奇门)

            由于最近笔者在开发数据脱敏相关功能,其中一类脱敏需求为能够按照指定的格式随机生成一个字符串来代替原有信息,数据看起来格式需要与原数据相同,如:电话号码,身份证号以及邮箱等。在网上搜索了下,发现没有特别合适的开源工具,于是秉承着没有开

    2024年02月19日
    浏览(48)
  • 开源项目:数据库表结构生成文档工具

    目录 一、软件介绍 二、技术框架 三、功能介绍 四、代码展示 1、获取数据库信息部分代码 2、导出Html文档代码 五、运行效果 六、项目开源地址 数据库表结构说明文档是程序员了解业务系统非常重要的资料、另外项目验收的时候,也需要提供给甲方数据库字典相关的技术验

    2023年04月10日
    浏览(38)
  • 开源|用 Java 实现一个生成 Markdown 文本的工具

    公司的 IM 每天有许多机器人推送的消息,我也在使用,这个功能是好的,但是当我们想去发送一些格式优美的消息时,却要费许多功夫,主要来源于字符串拼接,如果要拼接出 Markdown 格式的那就更费力了,另外由拼接带来的是混乱的代码,为了解决这个痛点,我写了一个

    2023年04月15日
    浏览(42)
  • Shell工具脚本-生成文件&下载资源并解析

    主要包含功能如下: 1.自动生成文件 2.下载文件并解析 #  @Author: lvzhihong #  @Date: 2023-08-29 08:43:41 #! /bin/bash #config project_code=(\\\"23861\\\"  \\\"23862\\\" \\\"23863\\\") project_out_root=\\\"aon_project_output\\\" project_apk_url=\\\"xxx/2023082904130232_APP_INFO_repo_10010111.xml\\\"; declare -A aon_module_feature_map aon_module_feature_map[\\\"gaze\\\"]=\\\"

    2024年02月11日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包