​Python—数据结构与算法​---动态规划—DP算法(Dynamic Programing)

这篇具有很好参考价值的文章主要介绍了​Python—数据结构与算法​---动态规划—DP算法(Dynamic Programing)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

我们一路奋战,

不是为了改变世界,

而是为了不让世界改变我们。

python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python


python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python


目录

我们一路奋战,

不是为了改变世界,

而是为了不让世界改变我们。

动态规划——DP算法(Dynamic Programing)

一、🏔斐波那契数列(递归VS动态规划)

1、🐒斐波那契数列——递归实现(python语言)——自顶向下

2、🐒斐波那契数列——动态规划实现(python语言)——自底向上

二、🏔动态规划算法——思想简介

1、🐒DP算法思想

2、🐒DP算法——解决问题的基本特征

3、🐒DP算法——解决问题的基本步骤

 4、🐒求解例子——求阶乘 n!

三、🏔动态规划——常见例题

1、🐒求解最长不降子序列

2、🐒求解最长的公共子序列

获取源码?私信?关注?点赞?收藏?



动态规划——DP算法(Dynamic Programing)

一、🏔斐波那契数列(递归VS动态规划)

python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python

1、🐒斐波那契数列——递归实现(python语言)——自顶向下

递归调用是非常耗费内存的,程序虽然简洁可是算法复杂度为O(2^n),当n很大时,程序运行很慢,甚至内存爆满。

def fib(n):
   #终止条件,也就是递归出口
   if n == 0 or n == 1:
       return 1
   else:
       #递归条件
       return (fib(n-1) + fib(n - 2))

2、🐒斐波那契数列——动态规划实现(python语言)——自底向上

动态规划——将需要重复计算的问题保存起来,不需要下次重新计算。对于斐波那契数列,算法复杂度为O(n)。

def dp_fib(n):
    #初始化一个数组,用于存储记录计算的结果。
    res = [None] * (n + 1)
    #前两项设置为1。
    res[0] = res[1] = 1
    #自底向上,将计算结果存入数组内。
    for i in range(2, (n + 1)):
        res[i] = res[i-1] + res[i-2]
    return res[n]

3、🐒方法概要

   (1)构造一个公式,它表示一个问题的解是与它的子问题的解相关的公式:

     

python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python

  (2)为这些子问题做索引,以便于它们能够在表中更好的存储与检索(用数组存储)。

  (3)以自底向上的方法来填写这个表格;首先填写最小的子问题的解。

  (4)这就保证了当我们解决一个特殊的子问题时,可以利用比它更小的所有可利用的子问题的解。

总之,因为在上世纪40年代(计算机普及很少时),这些规划设计是与“列表”方法相关的,因此被称为动态规划——Dynamic Programing。


二、🏔动态规划算法——思想简介

1、🐒DP算法思想

   (1)将待求解的问题分解称若干个子问题,并存储子问题的解而避免计算重复的子问题,并由子问题的解得到原问题的解。

   (2)动态规划算法通常用于求解具有某种最有性质的问题。

   (3)动态规划算法的基本要素:最优子结构性质和重叠子问题。

      最优子结构性质:问题的最优解包含着它的子问题的最优解。即不管前面的策略如何,此后的决策必须是基于当前状态(由上一次的决策产生)的最优决策。

      重叠子问题:在用递归算法自顶向下解问题时,每次产生的子问题并不总是新问题,有些问题被反复计算多次。对每个子问题只解一次,然后将其解保存起来,

            以后再遇到同样的问题时就可以直接引用,不必重新求解。

2、🐒DP算法——解决问题的基本特征

   (1)动态规划一般求解最值(最优、最大、最小、最长)问题;

   (2)动态规划解决 的问题一般是离散的,可以分解的(划分阶段的)。

   (3)动态规划结局的问题必须包含最优子结构,即可以有(n-1)的最优推导出n的最优。

3、🐒DP算法——解决问题的基本步骤

   动态规划算法的四个步骤:

    (1)刻画最优解的结构特性。(一维、二维、三维数组);

    (2)递归的定义最优解。(状态转移方程)

    (3)以自底向上的方法来计算最优解。

    (4)从计算得到的解来构造一个最优解。

 4、🐒求解例子——求阶乘 n!

python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python
python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python
#递归实现求阶乘
 def multiply(n):
     if n == 0 or n == 1:
         return 1
     return n * multiply(n -1)
 
 
 #动态规划实现求阶乘
 def dp_multiply(n):
     temp = [None] * (n + 1)
     temp[0] = 1
     temp[1] = 1
     for i in range(2, n + 1):
         temp[i] = i * temp[i - 1]
     return temp[n]

三、🏔动态规划——常见例题

1、🐒求解最长不降子序列

python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python

  (1)方法一:普通方法,算法复杂度为O(n^2)。

      假设原始的数列为数组 a

      分析:

        刻画结构特性:用F[ i ] 表示前 i 项最长不下降子序列的长度;

        状态转移方程:如果a [ i ] >=a [ j ],  F[i] = max(F[i], F[j] + 1)  其中,0 <= j < i

        数据存储:自底向上求解最小子结构最优解存入数组

 其中,pre[ i ]表示以元素a [ i ] 为结尾的最长不降序列的前一个元素索引(也就是以a[i]结尾的最长不降序列的倒数第二个元素)。存储这个值是为了方便输出最长的不降序列。

python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python

python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python

def Longest_Increaseing(a):
     F = [1] * len(a)
     pre = [0] * len(a)
     for i in range(1, len(a)):
         for j in range(i):
             if a[i] >= a[j]:
                 F[i] = max(F[i], F[j] + 1)
                 pre[i] = j
     return F, pre
 a = [5,2,8,6,3,6,9,7]
 F, pre = Longest_Increaseing(a)

#这里只是能获得两个数组,其中F[i]的最大值就是最长不降序列的长度。

接下来,输出最长的不降序列的元素值,请看下面的代码:


2、🐒求解最长的公共子序列

python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python
python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python
python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python
python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python
python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python
python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python
python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python

python实现动态规划算法,Python程序设计,Enovo热爱,知识学习,算法,动态规划,python

 求解最长公共子序列代码如下(python语言):

  import numpy as np
  def LCS(str1, str2):
     #获取两个序列的长度
     m = len(str1)
     n = len(str2)
     #生成一个存储计算子问题的二位矩阵,并将元素初始化为0。
     #这个矩阵的尺寸比两个序列的尺寸分别大1个单位。
     #对于这个矩阵,第一行和第一列元素值必然为0。
     #C[i][j]的含义是:Xi = (x1, x2, x3,..., xi)和Yj = (y1, y2, x3,..., yj)的最长公共子序列
     C = np.zeros((m+1, n+1), dtype=int)
     b = np.zeros((m+1, n+1), dtype=int) 

     for i in range(1, m+1):
         for j in range(1, n+1):
             #请注意这里为什么是i-1和j-1,因为其实C[1][1]表示的是
             # 两个序列的首个元素的最长公共子序列,对应的是str1[0]和str2[0]
             if str1[i-1] == str2[j-1]:
                 C[i][j] = C[i-1][j-1] + 1
                 b[i][j] = 1      #表示对角线方向
             else:
                 if C[i][j-1] <= C[i-1][j]:
                     b[i][j] = 2     #表示朝上方向
                 else:
                     b[i][j] = 3     #表示朝左方向
                 C[i][j] = max(C[i][j-1], C[i-1][j])
     return C, b
 
 test1 = ['b', 'd','c', 'a', 'b', 'a']
 test2 = ["a","b","c","b","d","a","b"]
 a, b = LCS(test2, test1)
 

 print(a)
#矩阵a存储的是公共子序列的长度,最大值就是最大公共子序列的长度
[[0 0 0 0 0 0 0]
[0 0 0 0 1 1 1]
[0 1 1 1 1 2 2]
[0 1 1 2 2 2 2]
[0 1 1 2 2 3 3]
[0 1 2 2 2 3 3]
[0 1 2 2 3 3 4]
[0 1 2 2 3 4 4]]


 print(b)
#这里: 1表示对角线方向、2表示朝上、3表示朝左,主要是为了求具体的子序列用的。
[[0 0 0 0 0 0 0]
[0 2 2 2 1 3 1]
[0 1 3 3 2 1 3]
[0 2 2 1 3 2 2]
[0 1 2 2 2 1 3]
[0 2 1 2 2 2 2]
[0 2 2 2 1 2 1]
[0 1 2 2 2 1 2]]

 接下来是输出最长公共子序列:

 import numpy as np
 def LCS(str1, str2):
     #获取两个序列的长度
     m = len(str1)
     n = len(str2)
     #生成一个存储计算子问题的二位矩阵,并将元素初始化为0。
     #这个矩阵的尺寸比两个序列的尺寸分别大1个单位。
     #对于这个矩阵,第一行和第一列元素值必然为0。
     #C[i][j]的含义是:Xi = (x1, x2, x3,..., xi)和Yj = (y1, y2, x3,..., yj)的最长公共子序列
     C = np.zeros((m+1, n+1), dtype=int)
     b = np.zeros((m+1, n+1), dtype=int)
 
     for i in range(1, m+1):
         for j in range(1, n+1):
             #请注意这里为什么是i-1和j-1,因为其实C[1][1]表示的是
             # 两个序列的首个元素的最长公共子序列,对应的是str1[0]和str2[0]
             if str1[i-1] == str2[j-1]:
                 C[i][j] = C[i-1][j-1] + 1
                 b[i][j] = 1      #表示对角线方向
             else:
                 if C[i][j-1] <= C[i-1][j]:
                     b[i][j] = 2     #表示朝上方向
                 else:
                     b[i][j] = 3     #表示朝左方向
                 C[i][j] = max(C[i][j-1], C[i-1][j])
     return C, b
 
 def Print_Lcs(b, X, i , j):
     if i == 0 or j == 0:
         return
     if b[i][j] == 1:
         Print_Lcs(b, X, i-1, j-1)
         print(X[i-1])  #为什么是i-1,因为b矩阵的行比X的行长一个单位,而且只输出相等的值,表示公共元素。
     elif b[i][j] == 2:
         Print_Lcs(b, X, i-1, j)
     else:
         Print_Lcs(b, X, i, j-1)
 
 
 if __name__ == '__main__':
     test1 = ['b', 'd','c', 'a', 'b', 'a']
     test2 = ["a","b","c","b","d","a","b"]
     a, b = LCS(test2, test1)
     Print_Lcs(b, test2, 7, 6)

#输出的结果是:  b、c、b、a  。(请注意这里结果不唯一,因为最长子序列长度为4, 存在三个序列长度为4的子序列)

好了,这篇博客到这就结束了,感谢大家的阅读!

2023年第二十九期,希望得到大家的喜欢🙇‍

也是新的系列,将会持续更新,🙇‍

希望大家有好的意见或者建议,欢迎私信


以上就是本篇文章的全部内容了

 ~ 关注我,点赞博文~ 每天带你涨知识!

1.看到这里了就 [点赞+好评+收藏] 三连 支持下吧,你的「点赞,好评,收藏」是我创作的动力。

2.关注我 ~ 每天带你学习 :各种前端插件、3D炫酷效果、图片展示、文字效果、以及整站模板 、HTML模板 、C++、数据结构、Python程序设计、Java程序设计、爬虫等! 「在这里有好多 开发者,一起探讨 前端 开发 知识,互相学习」!

3.以上内容技术相关问题可以相互学习,可 关 注 ↓公 Z 号 获取更多源码 !
 


获取源码?私信?关注?点赞?收藏?

👍+✏️+⭐️+🙇‍

有需要源码的小伙伴可以 关注下方微信公众号 " Enovo开发工厂 "🙇‍文章来源地址https://www.toymoban.com/news/detail-691987.html

到了这里,关于​Python—数据结构与算法​---动态规划—DP算法(Dynamic Programing)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 15.动态规划:数据结构优化DP

    数据结构优化DP有前缀和、滑动窗口、树状数组、线段树、单调栈、单调队列 中等 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如, [3,6,2,7] 是数组 [0,3,1,6,2,2

    2024年02月03日
    浏览(48)
  • python算法与数据结构---动态规划

    记不住过去的人,注定要重蹈覆辙。 对于一个模型为n的问题,将其分解为k个规模较小的子问题(阶段),按顺序求解子问题,前一子问题的解,为后一子问题提供有用的信息。在求解任一子问题时,通过决策求得局部最优解,依次解决各子问题。最后通过简单的判断,得到

    2024年02月20日
    浏览(76)
  • python数据结构与算法-动态规划(最长公共子序列)

    一个序列的子序列是在该序列中删去若干元素后得 到的序列。 例如:\\\"ABCD”和“BDF”都是“ABCDEFG”的子序列。 最长公共子序列(LCS) 问题: 给定两个序列X和Y,求X和Y长度最大的公共子字列。 例:X=\\\"ABBCBDE”Y=\\\"DBBCDB”LCS(XY)=\\\"BBCD\\\" 应用场景:字符串相似度比对 (1)问题思考 思考: 暴

    2024年02月08日
    浏览(52)
  • 【零基础】学python数据结构与算法笔记14-动态规划

    学习python数据结构与算法,学习常用的算法, b站学习链接 动态规划在基因测序、基因比对、hmm 有应用场景。 从斐波那契数列看动态规划 练习: 使用递归和非递归的方法来求解斐波那契数列。 这种非递归求斐波那契数,可以看成是一个动态规划思想,每次都会把重复子问

    2023年04月09日
    浏览(45)
  • 数据结构与算法-动态规划

    (我猜是做的多了背的题多了就自然懂了) 迭代法一般没有通用去重方式,因为已经相当于递归去重后了 这两个问题其实是一个问题,一般直接写出的没有去重的递归法,复杂度很高,此时需要使用备忘录去重,而备忘录去重时间复杂度和使用dp数组进行迭代求解时间复杂度相同

    2024年02月04日
    浏览(46)
  • 数据结构与算法之贪心&动态规划

            一:思考         1.某天早上公司领导找你解决一个问题,明天公司有N个同等级的会议需要使用同一个会议室,现在给你这个N个会议的开始和结束 时间,你怎么样安排才能使会议室最大利用?即安排最多场次的会议?电影的话 那肯定是最多加票价最高的,入场

    2024年02月09日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包