归并排序的详解!

这篇具有很好参考价值的文章主要介绍了归并排序的详解!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文旨在讲解归并排序的实现(递归及非递归)搬好小板凳,干货来了!归并排序的详解!,算法,排序算法,数据结构,c语言


 

前序:

在介绍归并排序之前,需要给大家介绍的是什么是归并,归并操作,也叫归并算法,指的是将两个顺序序列合并成一个顺序序列的方法,相信不少小伙伴之前都做过合并两个有序链表或者两个有序数组的例题,归并就是将两个数组或链表合并成一个链表或数组,还得保证与其原来的顺序相同!那么归并排序就是用到了归并这个思想,将一组元素完成排序的算法!


归并排序的介绍 

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。


归并排序的时间复杂度和空间复杂度

时间复杂度:O(N*logN),因为其是一种二叉树结构,其高度为logN,每层需要排序的个数都是N个,所以其时间复杂度为O(N*logN)。

空间复杂度:因为创建了一个新的数组,所以其空间复杂度为O(N);


归并排序的思想与思路

归并排序就是本质上是分治的方法来实现的,是将一组数据分割成若干组有序数组,然后对这若干个有序数组两两进行归并即可得到我们想要的排序!


归并排序的思路图

归并排序的详解!,算法,排序算法,数据结构,c语言


归并排序的动态图展示

归并排序的详解!,算法,排序算法,数据结构,c语言


归并排序的大致实现思路 

归并排序其实现的思路其实很简单,就是将一组数据分割,分割到若干组有序数组,然后两两进行归并,那么如何保证分割的数组为有序数组呢,这其实很简单,当分割到数组中只有一个元素的时候,那么该数组就是有序的数组了!然后进行归并拷贝到原数组上即可!


归并排序的代码实现

(C版本递归)

void _MergeSort(int* a, int left, int right, int* tem)
{
	//当再次需要调用的区间不存在时,返回即可!
	if (left == right)  //很显然,left不会大于right,保险起见,加上大于条件没有影响!
	{
		return;
	}
	//每次取出中间坐标,用于下次的左半边的递归,右半边递归同理!
	int mid = (left + right) / 2;
	_MergeSort(a, left, mid, tem);
	_MergeSort(a, mid + 1, right, tem);
	//到此,分割区间已经结束,每组区间都能保证时有序的了!下一步就开始进行归并!
	int begin1 = left, end1 = mid;
	int begin2 = mid + 1, end2 = right;
	int i = left;  //i用于对tem数组的下标进行表示!
	//下面开始归并两个有序数组,当两个有序数组其中一个遍历完成就退出循环!
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] < a[begin2])
		{
			tem[i++] = a[begin1++];
		}
		else
		{
			tem[i++] = a[begin2++];
		}
	}
	while (begin1 <= end1)
	{
		tem[i++] = a[begin1++];
	}
	while (begin2 <= end2)
	{
		tem[i++] = a[begin2++];
	}

	//归并结束后,将tem数组中的数据,拷贝到元素组中相应的位置即可!
	memcpy(a + left, tem + left, sizeof(int)*(right - left + 1));//个数为右边界减去左边加1,因为为闭区间!
	//至此,归并结束,拷贝结束!
}
void MergeSort(int* a, int n)
{
	//在堆上申请开辟一个tem数组,用来最后拷贝到原数组中!
	int* tem = (int *)malloc(sizeof(int) * n);

	//因为存在递归的调用,所以再创建一个函数,若仍在此函数上重复调用时,则会重复开辟新的空间,可能导致空间不足!
	_MergeSort(a, 0, n - 1, tem);

	//用完之后释放到tem数组!
	free(tem);
}

需要注意的是:当进行递归归并排序的时候,需要注意返回的条件,当区间不存在或者区间内部只有一个元素的时候就可以返回了!还需要注意的是,因为要进行拷贝,不能在原数组上直接拷贝,所以需要创建一个新的数组用来存储归并后的元素的位置,最后归并结束重新拷贝到原数组中即可!


(C版本非递归)

分段拷贝

// 归并排序非递归实现

//思路如下:要想实现归并排序的非递归,那么需要注意分组,从每组一个元素开始,因为当只有一个元素的时候,默认是有序的,然后
//进行归并拷贝即可,每组一个元素遍历结束之后,进行每组两个,依次进行每组2倍个元素进行归并!,当每组的元素为所有元素的一半或大于一半,
//即可完成排序,需要特别注意的是,进行非递归归并排序的时候,需要注意区间的取值,在此有两个拷贝方式,一种是整体拷贝,一组是归并一段拷贝一段!


//进行非递归实现归并的时候也需要创建一个新的数组,不能在原数组上进行对数据的改变,因为可能会造成数据的覆盖,导致数据不能完成排序!
//创建一个新数组,然后让每组元素为一个依次递增二倍,进行归并拷贝,直至每组的元素个数大于数组个数结束归并即可完成排序!

//下面先来进行分段拷贝!
//void MergeSortNonR(int* a,int n)
//{
//	//注意:gap代表的是每组归并时的元素的个数!
//	int gap = 1;
//	int* tem = (int*)malloc(sizeof(int) * n);
//	while (gap < n)		//当gap大于n时结束循环即可完成!
//	{
//		int j = 0;
//		//每组为一个的进行遍历!
//		for (int i = 0; i <n ; i+=2*gap)
//		{
//
//			//每组个数为1的进行归并排序!
//			//区间范围如下!
//			int begin1 = i, end1 = i + gap - 1;
//			int begin2 = i + gap, end2 = i + 2 * gap - 1;
//
//			//当end1>n,begin2>n时,不需要进行归并!
//			if (end1 >= n||begin2>=n)
//			{
//				break;
//			}
//
//			//对end2边界进行修改!
//			if (end2 >= n)
//			{
//				end2 = n-1;
//			}
//			
//			//开始进行归并拷贝!
//			while (begin1 <= end1 && begin2 <= end2)
//			{
//				if (a[begin1] < a[begin2])
//				{
//					tem[j++] = a[begin1++];
//				}
//				else
//				{
//					tem[j++] = a[begin2++];
//				}
//			}
//			while (begin1 <= end1)
//			{
//				tem[j++] = a[begin1++];
//			}
//			while (begin2 <= end2)
//			{
//				tem[j++] = a[begin2++];
//			}
//
//			//注意:需要注意的是:当求元素的个数时,应该用end2-i,不能减去begin1,因为begin1每次都会改变,记录的不再是数组开始拷贝的地方!
//			memcpy(a + i, tem + i, sizeof(int) * (end2 - i + 1));
//		}
//		gap *= 2;
//	}
//	free(tem);
//}

整体拷贝

//整段拷贝!
void MergeSortNonR(int* a, int n)
{
	//注意:gap代表的是每组归并时的元素的个数!
	int gap = 1;
	int* tem = (int*)malloc(sizeof(int) * n);
	
	while (gap < n)		//当gap大于n时结束循环即可完成!
	{
		//j的声明必须写在for循环的外面,因为若写到for循环内部时,在每组循环都会将原来归并好的数据放到前面的那些位置
		//导致以及归并好的又被覆盖,导致排序失败!(每组的归并都放在前两组内部,导致不能将全部归并结束,!)
		int j = 0;
		
		//每组为一个的进行遍历!
		for (int i = 0; i < n; i += 2 * gap)
		{

			//每组个数为1的进行归并排序!
			//区间范围如下!
			int begin1 = i, end1 = i + gap - 1;
			int begin2 = i + gap, end2 = i + 2 * gap - 1;

			//当end1>n,begin2>n时,不需要进行归并!
			if (end1 >= n)
			{
				end1 = n - 1;

				//将第二块区间设置为不存在的区间!如果设置为n-1那么会造成对最后一个数据的重复使用,拷贝,导致排序错误!
				begin2 = n;
				end2 = n - 1;
			}

			else if (begin2 >= n)
			{
				begin2 = n;
				end2 = n - 1;
			}
			else if(end2>=n)
			{
				end2 = n - 1;
			}
			//开始进行归并拷贝!


			while (begin1 <= end1 && begin2 <= end2)
			{
				if (a[begin1] <= a[begin2])
				{
					tem[j++] = a[begin1++];
				}
				else
				{
					tem[j++] = a[begin2++];
				}
			}
			while (begin1 <= end1)
			{
				tem[j++] = a[begin1++];
			}
			while (begin2 <= end2)
			{
				tem[j++] = a[begin2++];
			}

			//注意:需要注意的是:进行整段拷贝的时候,不需要再从a+begin1的位置开始拷贝啦,直接将所有tem中的元素拷贝到原数组即可!

		}

		memcpy(a, tem, sizeof(int) * n);
		gap *= 2;
	}

	free(tem);
}

需要注意的是:非递归的归并排序,整体拷贝和分段拷贝大致思路是一样的,只是最后进行memcpy的起始位置和个数有所不同!相关细节与思路都在源代码上加有注释标明,需要注意的是:当进行整体拷贝的时候,用于标记tem数组的j的坐标的定义一定要在for循环外部定义赋值,若在内部赋值定义,则每进行一次都会覆盖原来已经归并好的数据上面,导致归并排序不能正确进行!

今日的归并排序分享到此结束,欢迎大家积极评论支持。若有不足及补充,及时提出,必将改正! 

归并排序的详解!,算法,排序算法,数据结构,c语言文章来源地址https://www.toymoban.com/news/detail-692207.html

到了这里,关于归并排序的详解!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构与算法:归并排序

    在讲解归并排序前,我们先看到一个问题: 对于这样两个有序的数组,如何将它们合并为一个有序的数组? 在此我们处理这个问题的思路就是:开辟一个新的数组,然后分别安置一个指针在左右数组,利用指针遍历数组,每次对比将比较小的那个元素插入到数组的尾部。 像

    2024年01月21日
    浏览(46)
  • 【C语言】数据结构——排序三(归并与计数排序)

    💗个人主页💗 ⭐个人专栏——数据结构学习⭐ 💫点击关注🤩一起学习C语言💯💫 我们在前面学习了排序,包括直接插入排序,希尔排序,选择排序,堆排序,冒泡排序和快排。 今天我们来讲一讲归并排序和计数排序。 关注博主或是订阅专栏,掌握第一消息。 归并排序的

    2024年01月19日
    浏览(58)
  • python算法与数据结构---排序和归并排序

    掌握归并排序的基本原理 使用python语言解答归并排序题目 原理及过程 将两个有序的数组合并成一个有序数组称为 从上往下分解:把当前区间一分为二,直至分解为若干个长度为1的子数组 从上往下的合并:两个有序的子区域两两向上合并; 体现了分治思想,稳定排序 复杂

    2024年01月21日
    浏览(72)
  • 【数据结构】 七大排序详解(贰)——冒泡排序、快速排序、归并排序

    ==冒泡排序(Bubble Sort)==也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会

    2024年02月09日
    浏览(125)
  • 【数据结构】排序算法(二)—>冒泡排序、快速排序、归并排序、计数排序

    👀 樊梓慕: 个人主页  🎥 个人专栏: 《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》 🌝 每一个不曾起舞的日子,都是对生命的辜负 目录 前言 1.冒泡排序 2.快速排序 2.1Hoare版 2.2占坑版 2.3前后指针版 2.4三数取中对快速排序的优化 2.5非递归版 3.归

    2024年02月08日
    浏览(54)
  • 【数据结构与算法】:非递归实现快速排序、归并排序

    🔥 个人主页 : Quitecoder 🔥 专栏 :数据结构与算法 上篇文章我们详细讲解了递归版本的快速排序,本篇我们来探究非递归实现快速排序和归并排序 快速排序的非递归实现主要依赖于栈(stack)来模拟递归过程中的函数调用栈。递归版本的快速排序通过递归调用自身来处理子

    2024年03月24日
    浏览(55)
  • 【数据结构】排序(插入、选择、交换、归并) -- 详解

    1、排序的概念 排序 :所谓排序,就是使一串记录,按照其中的某个或某些的大小, 递增或递减 的排列起来的操作。 稳定性 :假定在待排序的记录序列中,存在多个具有相同的的记录,若经过排序,这些记录的 相对次序保持不变 ,即在原序列中,r[i] = r[j],

    2024年02月11日
    浏览(39)
  • [数据结构 -- 手撕排序算法第七篇] 递归实现归并排序

    目录 1、归并的思想 2、归并排序的思想 2.1 基本思想 2.2 图解分析 3、归并排序递归版本代码实现 3.1 代码解析 3.2 注意事项 3.2.1错误划分:[begin, mid-1],[mid, end] 3.2.2 正确划分:[begin, mid], [mid+1, end] 4、归并排序的测试 5、时间复杂度、空间复杂度分析 5.1 时间复杂度 5.2 空间复杂

    2024年02月16日
    浏览(51)
  • 【数据结构】—超级详细的归并排序(含C语言实现)

    ​                                         食用指南:本文在有C基础的情况下食用更佳                                          🔥 这就不得不推荐此专栏了: C语言                                        ♈️ 今日夜电波:斜陽—ヨルシカ            

    2024年02月08日
    浏览(44)
  • 数据结构排序——详细讲解归并排序(c语言实现递归及非递归)

    上次是快排和冒泡:数据结构排序——详解快排及其优化和冒泡排序(c语言实现、附有图片与动图示意) 今天为大家带来归并排序 归并排序是一种分治算法,它将序列分成两个子序列,分别对 子序列进行排序 ,然后将排序好的子序列 合并起来 。这个过程可以 递归 地进行,

    2024年01月22日
    浏览(67)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包