armadillo库安装教程

这篇具有很好参考价值的文章主要介绍了armadillo库安装教程。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

armadillo库功能介绍

armadillo库安装

vs中添加步骤

 测试


armadillo库功能介绍

在c++编程中,我们在进行一些算法运算经常会面对矩阵计算,c++的标准库中是没有关于矩阵运算的库的,在面对矩阵计算我们只能自己编写相关代码进行计算,十分复杂,增加代码量,故出现了armadillo库,在armadillo库中我们只需输入armadillo库的相关函数,便可进行矩阵运算。(armadillo函数大部分等同于matlab中的矩阵函数。在安装包中也有对应的PDF进行功能介绍)

armadillo库安装

安装环境:vs2013

安装链接(百度云)

链接:https://pan.baidu.com/s/1yvXpqq6XTQLxQTtmqxqS8Q 
提取码:vrvy 

解压压缩包

armadillo安装,matlab,线性代数,矩阵,c++,算法

vs中添加步骤

1.解压压缩包后打开vs,新建项目,点击生成,配置管理器,将平台改为x64

armadillo安装,matlab,线性代数,矩阵,c++,算法

 armadillo安装,matlab,线性代数,矩阵,c++,算法

2. 打开项目属性页,在vc++目录内,将包含目录->编辑->添加解压后的include文件夹的路径

armadillo安装,matlab,线性代数,矩阵,c++,算法

armadillo安装,matlab,线性代数,矩阵,c++,算法

注意:是添加includ文件夹的路径!

 armadillo安装,matlab,线性代数,矩阵,c++,算法

提示:下图界面内地址

armadillo安装,matlab,线性代数,矩阵,c++,算法

 文章来源地址https://www.toymoban.com/news/detail-692217.html

3.库目录编辑->添加examples文件夹下lib_win64文件夹的路径(提示:下图界面的文件地址)

armadillo安装,matlab,线性代数,矩阵,c++,算法

4.在C/C++中,附加包含目录->编辑->添加include文件路径

armadillo安装,matlab,线性代数,矩阵,c++,算法

 5.点击链接器->常规->附加库目录->编辑->添加examples下lib_win64路径

armadillo安装,matlab,线性代数,矩阵,c++,算法

6.选择链接器->输入,将附加依赖项里添加exmples中lib_win64文件夹内两个lib文件

 armadillo安装,matlab,线性代数,矩阵,c++,算法

armadillo安装,matlab,线性代数,矩阵,c++,算法

 7.点击确定,推出配置,点击重新生成解决方案

armadillo安装,matlab,线性代数,矩阵,c++,算法

8.将examples中lib_win64的两个.dll文件复制到新建项目的x64,debug下

armadillo安装,matlab,线性代数,矩阵,c++,算法

 测试

最后测试代码,在examples下exmple1.cpp内代码复制到新建的cpp项目下,运行程序

armadillo安装,matlab,线性代数,矩阵,c++,算法

 测试成功,安装结束

 

 

 

 

 

 

 

到了这里,关于armadillo库安装教程的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 0203逆矩阵-矩阵及其运算-线性代数

    定义7 对于 n n n 阶矩阵A,如果有一个 n n n 阶矩阵B,使 A B = B A = E AB=BA=E A B = B A = E 则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵,简称逆阵。 定理1 若矩阵A可逆,则 ∣ A ∣ ≠ 0 vert Avert not = 0 ∣ A ∣  = 0 证明: A 可逆,即有 A − 1 ,使得 A A − 1 = E ∣ A A − 1 ∣ = ∣ A

    2024年04月13日
    浏览(56)
  • 线性代数——求逆矩阵

    利用计算技巧凑出公式:两边加E、提取公因式、没有公因式可提时利用隐形的E=AA^(-1),因为E可看作系数1 主对角线有矩阵(副对角线是0矩阵),则分别逆后放在原位置 副对角线有矩阵(主对角线是0矩阵),则分别逆后互换位置

    2024年02月11日
    浏览(52)
  • 线性代数基础【2】矩阵

    一、基本概念 ①矩阵 像如下图示的为矩阵,记为A=(aij)m*n ②同型矩阵及矩阵相等 若A、B为如下两个矩阵 如果A和B的行数和列数相等,那么A和B为同型矩阵,且A和B的元素相等(即:aij=bij),则称A和B相等 ③伴随矩阵 设A为n阶矩阵(如上图所示),设A的行列式|A|,则A中aij的余子式为Mij,代数余

    2024年02月04日
    浏览(52)
  • 线性代数_对称矩阵

    对称矩阵是线性代数中一种非常重要的矩阵结构,它具有许多独特的性质和应用。下面是对称矩阵的详细描述: ### 定义 对称矩阵,即对称方阵,是指一个n阶方阵A,其转置矩阵等于其本身,即A^T = A。这意味着方阵A中的元素满足交换律,即对于任意的i和j(i ≤ j),都有A[

    2024年02月02日
    浏览(45)
  • 投影矩阵推导【线性代数】

    如果两个向量垂直,那么满足。但如果两个向量不垂直,我们就将 b 投影到 a 上,就得到了二者的距离,我们也称为向量 b 到直线 a 的误差。这样就有出现了垂直:                (1) 投影向量 p 在直线上,不妨假设  ,那么误差 。带入式(1)中得到: 投影矩阵:  

    2024年02月06日
    浏览(57)
  • 线性代数基础--矩阵

     矩阵是由排列在矩形阵列中的数字或其他数学对象组成的表格结构。它由行和列组成,并且在数学和应用领域中广泛使用。 元素:矩阵中的每个数字称为元素。元素可以是实数、复数或其他数学对象。 维度:矩阵的维度表示矩阵的行数和列数。一个 m × n 的矩阵有 m 行和

    2024年02月11日
    浏览(46)
  • 线性代数3:矩阵

    目录 矩阵研究的是什么呢? 逆阵 什么叫做逆阵?  例题1:  例题2:  逆阵的存在性 定理1: 定理2: 定理3: 定理4: 拉普拉茨方程 方阵可以的条件  例题3:  Note1: 例题4  Note2:  Note3: Note4:  Note5:  Note6: Note7:  例题5:  逆矩阵的求法: 方法1:伴随矩阵法:  方

    2024年02月13日
    浏览(55)
  • 线性代数:矩阵的定义

    目录 一、定义 二、方阵 三、对角阵 四、单位阵 五、数量阵  六、行(列)矩阵  七、同型矩阵 八、矩阵相等 九、零矩阵 十、方阵的行列式

    2024年01月22日
    浏览(39)
  • 线性代数-矩阵的本质

    线性代数-矩阵的本质

    2024年02月11日
    浏览(44)
  • 线性代数(七) 矩阵分析

    从性线变换我们得出,矩阵和函数是密不可分的。如何用函数的思维来分析矩阵。 通过这个定义我们就定义了矩阵序列的 收敛性 。 研究矩阵序列收敛性的常用方法,是用《常见向量范数和矩阵范数》来研究矩阵序列的极限。 长度是范数的一个特例。事实上,Frobenius范数对

    2024年02月08日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包