并发容器11

这篇具有很好参考价值的文章主要介绍了并发容器11。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一 JDK 提供的并发容器总结

JDK 提供的这些容器大部分在 java.util.concurrent 包中。

  • ConcurrentHashMap: 线程安全的 HashMap

  • CopyOnWriteArrayList: 线程安全的 List,在读多写少的场合性能非常好,远远好于 Vector.

  • ConcurrentLinkedQueue: 高效的并发队列,使用链表实现。可以看做一个线程安全的 LinkedList,这是一个非阻塞队列。

  • BlockingQueue: 这是一个接口,JDK 内部通过链表、数组等方式实现了这个接口。表示阻塞队列,非常适合用于作为数据共享的通道。

  • ConcurrentSkipListMap: 跳表的实现。这是一个 Map,使用跳表的数据结构进行快速查找。

二 ConcurrentHashMap

这里救不多赘述了,因为他比较常见

三 CopyOnWriteArrayList

3.1 CopyOnWriteArrayList 简介

public class CopyOnWriteArrayList<E>
extends Object
implements List<E>, RandomAccess, Cloneable, Serializable

在很多应用场景中,读操作可能会远远大于写操作。由于读操作根本不会修改原有的数据,因此对于每次读取都进行加锁其实是一种资源浪费。我们应该允许多个线程同时访问 List 的内部数据,毕竟读取操作是安全的。

这和ReentrantReadWriteLock 读写锁的思想非常类似,也就是读读共享、写写互斥、读写互斥、写读互斥。JDK 中提供了 CopyOnWriteArrayList 类比相比于在读写锁的思想又更进一步。为了将读取的性能发挥到极致,CopyOnWriteArrayList 读取是完全不用加锁的,并且更厉害的是:写入也不会阻塞读取操作。只有写入和写入之间需要进行同步等待。这样一来,读操作的性能就会大幅度提升。那它是怎么做的呢?

3.2 CopyOnWriteArrayList 是如何做到的

CopyOnWriteArrayList 类的所有可变操作(add,set 等等)都是通过创建底层数组的新副本来实现的。当 List 需要被修改的时候,我并不修改原有内容,而是对原有数据进行一次复制,将修改的内容写入副本。写完之后,再将修改完的副本替换原来的数据,这样就可以保证写操作不会影响读操作了。

CopyOnWriteArrayList 的名字就能看出CopyOnWriteArrayList 是满足CopyOnWrite 的 ArrayList,所谓CopyOnWrite 也就是说:在计算机,如果你想要对一块内存进行修改时,我们不在原有内存块中进行写操作,而是将内存拷贝一份,在新的内存中进行写操作,写完之后呢,就将指向原来内存指针指向新的内存,原来的内存就可以被回收掉了。

3.3 CopyOnWriteArrayList 读取和写入源码简单分析

3.3.1 CopyOnWriteArrayList 读取操作的实现

读取操作没有任何同步控制和锁操作,理由就是内部数组 array 不会发生修改,只会被另外一个 array 替换,因此可以保证数据安全。

    /** The array, accessed only via getArray/setArray. */
    private transient volatile Object[] array;
    public E get(int index) {
        return get(getArray(), index);
    }
    @SuppressWarnings("unchecked")
    private E get(Object[] a, int index) {
        return (E) a[index];
    }
    final Object[] getArray() {
        return array;
    }
3.3.2 CopyOnWriteArrayList 写入操作的实现

CopyOnWriteArrayList 写入操作 add() 方法在添加集合的时候加了锁,保证了同步,避免了多线程写的时候会 copy 出多个副本出来。

    /**
     * Appends the specified element to the end of this list.
     *
     * @param e element to be appended to this list
     * @return {@code true} (as specified by {@link Collection#add})
     */
    public boolean add(E e) {
        final ReentrantLock lock = this.lock;
        lock.lock();//加锁
        try {
            Object[] elements = getArray();
            int len = elements.length;
            Object[] newElements = Arrays.copyOf(elements, len + 1);//拷贝新数组
            newElements[len] = e;
            setArray(newElements);
            return true;
        } finally {
            lock.unlock();//释放锁
        }
    }

四 ConcurrentLinkedQueue

Java 提供的线程安全的 Queue 可以分为阻塞队列非阻塞队列,其中阻塞队列的典型例子是 BlockingQueue,非阻塞队列的典型例子是 ConcurrentLinkedQueue,在实际应用中要根据实际需要选用阻塞队列或者非阻塞队列。 阻塞队列可以通过加锁来实现,非阻塞队列可以通过 CAS 操作实现。

从名字可以看出,ConcurrentLinkedQueue这个队列使用链表作为其数据结构.ConcurrentLinkedQueue 应该算是在高并发环境中性能最好的队列了。它之所有能有很好的性能,是因为其内部复杂的实现。

ConcurrentLinkedQueue 内部代码就不分析了,大家知道 ConcurrentLinkedQueue 主要使用 CAS 非阻塞算法来实现线程安全就好了。

ConcurrentLinkedQueue 适合在对性能要求相对较高,同时对队列的读写存在多个线程同时进行的场景,即如果对队列加锁的成本较高则适合使用无锁的 ConcurrentLinkedQueue 来替代

五 BlockingQueue

上面我们己经提到了 ConcurrentLinkedQueue 作为高性能的非阻塞队列。下面我们要讲到的是阻塞队列——BlockingQueue。阻塞队列(BlockingQueue)被广泛使用在“生产者-消费者”问题中,其原因是 BlockingQueue 提供了可阻塞的插入和移除的方法。当队列容器已满,生产者线程会被阻塞,直到队列未满;当队列容器为空时,消费者线程会被阻塞,直至队列非空时为止。

BlockingQueue 是一个接口,继承自 Queue,所以其实现类也可以作为 Queue 的实现来使用,而 Queue 又继承自 Collection 接口。下面是 BlockingQueue 的相关实现类:

并发容器11,并发,windows

下面主要介绍一下:ArrayBlockingQueue、LinkedBlockingQueue、PriorityBlockingQueue,这三个 BlockingQueue 的实现类。

5.2 ArrayBlockingQueue

5.1 BlockingQueue 简单介绍

ArrayBlockingQueue 是 BlockingQueue 接口的有界队列实现类,底层采用数组来实现。ArrayBlockingQueue 一旦创建,容量不能改变。其并发控制采用可重入锁来控制,不管是插入操作还是读取操作,都需要获取到锁才能进行操作。当队列容量满时,尝试将元素放入队列将导致操作阻塞;尝试从一个空队列中取一个元素也会同样阻塞。

ArrayBlockingQueue 默认情况下不能保证线程访问队列的公平性,所谓公平性是指严格按照线程等待的绝对时间顺序,即最先等待的线程能够最先访问到 ArrayBlockingQueue。而非公平性则是指访问 ArrayBlockingQueue 的顺序不是遵守严格的时间顺序,有可能存在,当 ArrayBlockingQueue 可以被访问时,长时间阻塞的线程依然无法访问到 ArrayBlockingQueue。如果保证公平性,通常会降低吞吐量。如果需要获得公平性的 ArrayBlockingQueue,可采用如下代码:

private static ArrayBlockingQueue<Integer> blockingQueue = new ArrayBlockingQueue<Integer>(10,true);

5.3 LinkedBlockingQueue

LinkedBlockingQueue 底层基于单向链表实现的阻塞队列,可以当做无界队列也可以当做有界队列来使用,同样满足 FIFO 的特性,与 ArrayBlockingQueue 相比起来具有更高的吞吐量,为了防止 LinkedBlockingQueue 容量迅速增,损耗大量内存。通常在创建 LinkedBlockingQueue 对象时,会指定其大小,如果未指定,容量等于 Integer.MAX_VALUE

    /**
     *某种意义上的无界队列
     * Creates a {@code LinkedBlockingQueue} with a capacity of
     * {@link Integer#MAX_VALUE}.
     */
    public LinkedBlockingQueue() {
        this(Integer.MAX_VALUE);
    }

    /**
     *有界队列
     * Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.
     *
     * @param capacity the capacity of this queue
     * @throws IllegalArgumentException if {@code capacity} is not greater
     *         than zero
     */
    public LinkedBlockingQueue(int capacity) {
        if (capacity <= 0) throw new IllegalArgumentException();
        this.capacity = capacity;
        last = head = new Node<E>(null);
    }

5.4 PriorityBlockingQueue

PriorityBlockingQueue 是一个支持优先级的无界阻塞队列。默认情况下元素采用自然顺序进行排序,也可以通过自定义类实现 compareTo() 方法来指定元素排序规则,或者初始化时通过构造器参数 Comparator 来指定排序规则。

PriorityBlockingQueue 并发控制采用的是 ReentrantLock,队列为无界队列(ArrayBlockingQueue 是有界队列,LinkedBlockingQueue 也可以通过在构造函数中传入 capacity 指定队列最大的容量,但是 PriorityBlockingQueue 只能指定初始的队列大小,后面插入元素的时候,如果空间不够的话会自动扩容)。

简单地说,它就是 PriorityQueue 的线程安全版本。不可以插入 null 值,同时,插入队列的对象必须是可比较大小的(comparable),否则报 ClassCastException 异常。它的插入操作 put 方法不会 block,因为它是无界队列(take 方法在队列为空的时候会阻塞)。

六 ConcurrentSkipListMap

使用跳表实现 Map 和使用哈希算法实现 Map 的另外一个不同之处是:哈希并不会保存元素的顺序,而跳表内所有的元素都是排序的。因此在对跳表进行遍历时,你会得到一个有序的结果。所以,如果你的应用需要有序性,那么跳表就是你不二的选择。JDK 中实现这一数据结构的类是 ConcurrentSkipListMap。

redis 的章节我已经说过调表,这里就不多赘述了文章来源地址https://www.toymoban.com/news/detail-692223.html

到了这里,关于并发容器11的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 安全无忧:Java并发集合容器的应用与实践

    JDK 提供的这些容器大部分在 java.util.concurrent 包中: ConcurrentHashMap : 线程安全的 HashMap CopyOnWriteArrayList : 线程安全的 List,在读多写少的场合性能非常好,远远好于 Vector ConcurrentLinkedQueue : 高效的并发队列,使用链表实现。可以看做一个线程安全的 LinkedList,这是一个非阻塞队列

    2024年01月19日
    浏览(41)
  • C++ 11新特性之并发

    概述         随着计算机硬件的发展,多核处理器已经成为主流,对程序并发执行能力的需求日益增长。C++ 11标准引入了一套全面且强大的并发编程支持库,为开发者提供了一个安全、高效地利用多核CPU资源进行并行计算的新框架,极大地简化了多线程开发。 std::thread  

    2024年02月20日
    浏览(29)
  • 11. TCP并发网络编程

    本文主要介绍TCP并发网络的编程,重点介绍io多路复用的epoll实现 要完成一个完整的 TCP/IP 网络通信过程,需要使用一系列函数来实现。这些函数包括 bind、listen、accept 和 recv/send 等。下面是它们的配合流程: 创建套接字(socket):使用 socket 函数创建一个套接字,指定协议族和

    2024年02月07日
    浏览(38)
  • 并发编程11:Synchronized与锁升级

    谈谈你对Synchronized的理解 Sychronized的锁升级你聊聊 Synchronized实现原理,monitor对象什么时候生成的?知道monitor的monitorenter和monitorexit这两个是怎么保证同步的嘛?或者说这两个操作计算机底层是如何执行的 偏向锁和轻量级锁有什么区别 Java5以前,只有Synchronized,这个是操作系

    2024年02月04日
    浏览(41)
  • C++11并发与多线程笔记 (1)

    指在一个时间段内有多个进程在执行 两个或者更多的任务(独立的活动)同时发生(进行):一个程序同时执行多个独立的任务; 以往计算机,单核cpu(中央处理器):某一个时刻只能执行一个任务,由操作系统调度,每秒钟进行多次所谓的“任务切换”。并发的假象( 不

    2024年02月12日
    浏览(44)
  • 11 | 如何修改TCP缓冲区才能兼顾并发数量与传输速度?

    我们在[第 8 课] 中讲了如何从 C10K 进一步到 C10M,不过,这也意味着 TCP 占用的内存翻了一千倍,服务器的内存资源会非常紧张。 如果你在 Linux 系统中用 free 命令查看内存占用情况,会发现一栏叫做 buff/cache,它是系统内存,似乎与应用进程无关。但每当进程新建一个 TCP 连接

    2024年01月22日
    浏览(40)
  • 11. 盛最多水的容器

    给定一个长度为  n  的整数数组  height  。有  n  条垂线,第  i  条线的两个端点是  (i, 0)  和  (i, height[i])  。 找出其中的两条线,使得它们与  x  轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明: 你不能倾斜容器。 示例 1: 示例 2: 提示

    2024年01月20日
    浏览(57)
  • 力扣 | 11. 盛最多水的容器

    双指针解法–对撞指针

    2024年01月18日
    浏览(39)
  • C++11并发与多线程笔记(6) unique_lock(类模板)

    unique_lock 是一个类模板。 unique_lock 比 lock_guard 灵活很多 ( 多出来很多用法 ),效率差一点,内存占用多一些。 使用: unique_lockmutex myUniLock(myMutex); std::adopt_lock:标记作用,表示这个互斥量已经被lock()(方便记忆:已经被lock()收养了,不需要再次lock() ),即 不需要在构造函

    2024年02月12日
    浏览(42)
  • leetcode 11. 盛最多水的容器

    leetcode 11. 盛最多水的容器 解题思路 :双指针 每次向内移动矮的指针,因为如果向内移动高的指针,面积一定会变小;如果向内移动矮的指针,面积还有可能变大。

    2024年02月06日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包