探索图像数据中的隐藏信息:语义实体识别和关系抽取的奇妙之旅

这篇具有很好参考价值的文章主要介绍了探索图像数据中的隐藏信息:语义实体识别和关系抽取的奇妙之旅。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

探索图像数据中的隐藏信息:语义实体识别和关系抽取的奇妙之旅

1. 简介

1.1 背景

关键信息抽取 (Key Information Extraction, KIE)指的是是从文本或者图像中,抽取出关键的信息。针对文档图像的关键信息抽取任务作为OCR的下游任务,存在非常多的实际应用场景,如表单识别、车票信息抽取、身份证信息抽取等。然而,使用人力从这些文档图像中提取或者收集关键信息耗时费力,怎样自动化融合图像中的视觉、布局、文字等特征并完成关键信息抽取是一个价值与挑战并存的问题。

对于特定场景的文档图像,其中的关键信息位置、版式等较为固定,因此在研究早期有很多基于模板匹配的方法进行关键信息的抽取,考虑到其流程较为简单,该方法仍然被广泛应用在目前的很多场景中。但是这种基于模板匹配的方法在应用到不同的场景中时,需要耗费大量精力去调整与适配模板,迁移成本较高。

文档图像中的KIE一般包含2个子任务,示意图如下图所示。

  • (1)SER: 语义实体识别 (Semantic Entity Recognition),对每一个检测到的文本进行分类,如将其分为姓名,身份证。如下图中的黑色框和红色框。
  • (2)RE: 关系抽取 (Relation Extraction),对每一个检测到的文本进行分类,如将其分为问题 (key) 和答案 (value) 。然后对每一个问题找到对应的答案,相当于完成key-value的匹配过程。如下图中的红色框和黑色框分别代表问题和答案,黄色线代表问题和答案之间的对应关系。
探索图像数据中的隐藏信息:语义实体识别和关系抽取的奇妙之旅,智能文档&OCR项目落地专栏,人工智能,自然语言处理,计算机视觉,ocr,智能文档分析,命名实体识别,关系抽取,原力计划

1.2 基于深度学习的主流方法

一般的KIE方法基于命名实体识别(Named Entity Recognition,NER)来展开研究,但是此类方法仅使用了文本信息而忽略了位置与视觉特征信息,因此精度受限。近几年大多学者开始融合多个模态的输入信息,进行特征融合,并对多模态信息进行处理,从而提升KIE的精度。主要方法有以下几种

  • (1)基于Grid的方法:此类方法主要关注图像层面多模态信息的融合,文本大多大多为字符粒度,对文本与结构结构信息的嵌入方式较为简单,如Chargrid[1]等算法。
  • (2)基于Token的方法:此类方法参考NLP中的BERT等方法,将位置、视觉等特征信息共同编码到多模态模型中,并且在大规模数据集上进行预训练,从而在下游任务中,仅需要少量的标注数据便可以获得很好的效果。如LayoutLM[2], LayoutLMv2[3], LayoutXLM[4], StrucText[5]等算法。
  • (3)基于GCN的方法:此类方法尝试学习图像、文字之间的结构信息,从而可以解决开集信息抽取的问题(训练集中没有见过的模板),如GCN[6]、SDMGR[7]等算法。
  • (4)基于End-to-end的方法:此类方法将现有的OCR文字识别以及KIE信息抽取2个任务放在一个统一的网络中进行共同学习,并在学习过程中相互加强。如Trie[8]等算法。

更多关于该系列算法的详细介绍,请参考“动手学OCR·十讲”课程的课节六部分:文档分析理论与实践。

2. 关键信息抽取任务流程

PaddleOCR中实现了LayoutXLM等算法(基于Token),同时,在PP-StructureV2中,对LayoutXLM多模态预训练模型的网络结构进行简化,去除了其中的Visual backbone部分,设计了视觉无关的VI-LayoutXLM模型,同时引入符合人类阅读顺序的排序逻辑以及UDML知识蒸馏策略,最终同时提升了关键信息抽取模型的精度与推理速度。

下面介绍怎样基于PaddleOCR完成关键信息抽取任务。

在非End-to-end的KIE方法中,完成关键信息抽取,至少需要2个步骤:首先使用OCR模型,完成文字位置与内容的提取,然后使用KIE模型,根据图像、文字位置以及文字内容,提取出其中的关键信息。

2.1 训练OCR模型

2.1.1 文本检测

(1)数据

PaddleOCR中提供的模型大多数为通用模型,在进行文本检测的过程中,相邻文本行的检测一般是根据位置的远近进行区分,如上图,使用PP-OCRv3通用中英文检测模型进行文本检测时,容易将”民族“与“汉”这2个代表不同的字段检测到一起,从而增加后续KIE任务的难度。因此建议在做KIE任务的过程中,首先训练一个针对该文档数据集的检测模型。

在数据标注时,关键信息的标注需要隔开,比上图中的 “民族汉” 3个字相隔较近,此时需要将”民族“与”汉“标注为2个文本检测框,否则会增加后续KIE任务的难度。

对于下游任务,一般来说,200~300张的文本训练数据即可保证基本的训练效果,如果没有太多的先验知识,可以先标注 200~300 张图片,进行后续文本检测模型的训练。

(2)模型

在模型选择方面,推荐使用PP-OCRv3_det,关于更多关于检测模型的训练方法介绍,请参考:OCR文本检测模型训练教程与PP-OCRv3 文本检测模型训练教程。

2.1.2 文本识别

相对自然场景,文档图像中的文本内容识别难度一般相对较低(背景相对不太复杂),因此优先建议尝试PaddleOCR中提供的PP-OCRv3通用文本识别模型(PP-OCRv3模型库链接)。

(1)数据

然而,在部分文档场景中也会存在一些挑战,如身份证场景中存在着罕见字,在发票等场景中的字体比较特殊,这些问题都会增加文本识别的难度,此时如果希望保证或者进一步提升模型的精度,建议基于特定文档场景的文本识别数据集,加载PP-OCRv3模型进行微调。

在模型微调的过程中,建议准备至少5000张垂类场景的文本识别图像,可以保证基本的模型微调效果。如果希望提升模型的精度与泛化能力,可以合成更多与该场景类似的文本识别数据,从公开数据集中收集通用真实文本识别数据,一并添加到该场景的文本识别训练任务过程中。在训练过程中,建议每个epoch的真实垂类数据、合成数据、通用数据比例在1:1:1左右,这可以通过设置不同数据源的采样比例进行控制。如有3个训练文本文件,分别包含1W、2W、5W条数据,那么可以在配置文件中设置数据如下:

Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/
    label_file_list:
    - ./train_data/train_list_1W.txt
    - ./train_data/train_list_2W.txt
    - ./train_data/train_list_5W.txt
    ratio_list: [1.0, 0.5, 0.2]
    ...

(2)模型

在模型选择方面,推荐使用通用中英文文本识别模型PP-OCRv3_rec,关于更多关于文本识别模型的训练方法介绍,请参考:OCR文本识别模型训练教程与PP-OCRv3文本识别模型库与配置文件。

2.2 训练KIE模型

对于识别得到的文字进行关键信息抽取,有2种主要的方法。

(1)直接使用SER,获取关键信息的类别:如身份证场景中,将“姓名“与”张三“分别标记为name_keyname_value。最终识别得到的类别为name_value对应的文本字段即为我们所需要的关键信息。

(2)联合SER与RE进行使用:这种方法中,首先使用SER,获取图像文字内容中所有的key与value,然后使用RE方法,对所有的key与value进行配对,找到映射关系,从而完成关键信息的抽取。

2.2.1 SER

以身份证场景为例, 关键信息一般包含姓名性别民族等,我们直接将对应的字段标注为特定的类别即可,如下图所示。

探索图像数据中的隐藏信息:语义实体识别和关系抽取的奇妙之旅,智能文档&OCR项目落地专栏,人工智能,自然语言处理,计算机视觉,ocr,智能文档分析,命名实体识别,关系抽取,原力计划

注意:

  • 标注过程中,对于无关于KIE关键信息的文本内容,均需要将其标注为other类别,相当于背景信息。如在身份证场景中,如果我们不关注性别信息,那么可以将“性别”与“男”这2个字段的类别均标注为other
  • 标注过程中,需要以文本行为单位进行标注,无需标注单个字符的位置信息。

数据量方面,一般来说,对于比较固定的场景,50张左右的训练图片即可达到可以接受的效果,可以使用PPOCRLabel完成KIE的标注过程。

模型方面,推荐使用PP-StructureV2中提出的VI-LayoutXLM模型,它基于LayoutXLM模型进行改进,去除其中的视觉特征提取模块,在精度基本无损的情况下,进一步提升了模型推理速度。更多教程请参考:VI-LayoutXLM算法介绍与KIE关键信息抽取使用教程。

2.2.2 SER + RE

该过程主要包含SER与RE 2个过程。SER阶段主要用于识别出文档图像中的所有key与value,RE阶段主要用于对所有的key与value进行匹配。

以身份证场景为例, 关键信息一般包含姓名性别民族等关键信息,在SER阶段,我们需要识别所有的question (key) 与answer (value) 。标注如下所示。每个字段的类别信息(label字段)可以是question、answer或者other(与待抽取的关键信息无关的字段)

探索图像数据中的隐藏信息:语义实体识别和关系抽取的奇妙之旅,智能文档&OCR项目落地专栏,人工智能,自然语言处理,计算机视觉,ocr,智能文档分析,命名实体识别,关系抽取,原力计划

在RE阶段,需要标注每个字段的的id与连接信息,如下图所示。

探索图像数据中的隐藏信息:语义实体识别和关系抽取的奇妙之旅,智能文档&OCR项目落地专栏,人工智能,自然语言处理,计算机视觉,ocr,智能文档分析,命名实体识别,关系抽取,原力计划

每个文本行字段中,需要添加idlinking字段信息,id记录该文本行的唯一标识,同一张图片中的不同文本内容不能重复,linking是一个列表,记录了不同文本之间的连接信息。如字段“出生”的id为0,字段“1996年1月11日”的id为1,那么它们均有[[0, 1]]的linking标注,表示该id=0与id=1的字段构成key-value的关系(姓名、性别等字段类似,此处不再一一赘述)。

注意:

  • 标注过程中,如果value是多个字符,那么linking中可以新增一个key-value对,如[[0, 1], [0, 2]]

数据量方面,一般来说,对于比较固定的场景,50张左右的训练图片即可达到可以接受的效果,可以使用PPOCRLabel完成KIE的标注过程。

模型方面,推荐使用PP-StructureV2中提出的VI-LayoutXLM模型,它基于LayoutXLM模型进行改进,去除其中的视觉特征提取模块,在精度基本无损的情况下,进一步提升了模型推理速度。更多教程请参考:VI-LayoutXLM算法介绍与KIE关键信息抽取使用教程。

3. 参考文献

[1] Katti A R, Reisswig C, Guder C, et al. Chargrid: Towards understanding 2d documents[J]. arXiv preprint arXiv:1809.08799, 2018.

[2] Xu Y, Li M, Cui L, et al. Layoutlm: Pre-training of text and layout for document image understanding[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020: 1192-1200.

[3] Xu Y, Xu Y, Lv T, et al. LayoutLMv2: Multi-modal pre-training for visually-rich document understanding[J]. arXiv preprint arXiv:2012.14740, 2020.

[4]: Xu Y, Lv T, Cui L, et al. Layoutxlm: Multimodal pre-training for multilingual visually-rich document understanding[J]. arXiv preprint arXiv:2104.08836, 2021.

[5] Li Y, Qian Y, Yu Y, et al. StrucTexT: Structured Text Understanding with Multi-Modal Transformers[C]//Proceedings of the 29th ACM International Conference on Multimedia. 2021: 1912-1920.

[6] Liu X, Gao F, Zhang Q, et al. Graph convolution for multimodal information extraction from visually rich documents[J]. arXiv preprint arXiv:1903.11279, 2019.

[7] Sun H, Kuang Z, Yue X, et al. Spatial Dual-Modality Graph Reasoning for Key Information Extraction[J]. arXiv preprint arXiv:2103.14470, 2021.

[8] Zhang P, Xu Y, Cheng Z, et al. Trie: End-to-end text reading and information extraction for document understanding[C]//Proceedings of the 28th ACM International Conference on Multimedia. 2020: 1413-1422.

参考链接

https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.7

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

探索图像数据中的隐藏信息:语义实体识别和关系抽取的奇妙之旅,智能文档&OCR项目落地专栏,人工智能,自然语言处理,计算机视觉,ocr,智能文档分析,命名实体识别,关系抽取,原力计划文章来源地址https://www.toymoban.com/news/detail-692771.html

到了这里,关于探索图像数据中的隐藏信息:语义实体识别和关系抽取的奇妙之旅的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 手把手教学构建农业知识图谱:农业领域的信息检索+智能问答,命名实体识别,关系抽取,实体关系查询

    项目设计集合(人工智能方向):助力新人快速实战掌握技能、自主完成项目设计升级,提升自身的硬实力(不仅限NLP、知识图谱、计算机视觉等领域) :汇总有意义的项目设计集合,助力新人快速实战掌握技能,助力用户更好利用 CSDN 平台,自主完成项目设计升级,提升自

    2024年02月12日
    浏览(35)
  • 【论文阅读】图像信息隐藏文章汇总(含代码)

    Large-capacity Image Steganography Based on Invertible Neural Networks CVPR2021;可逆网络ISN,大容量的实现是靠RGB通道的累加;无公开代码 Multitask Identity-Aware Image Steganography via Minimax Optimization IEEE Transactions on Image Processing2021;提出直接识别防止接收端泄密、其中恢复分支可选;主要涉及身份信息

    2024年04月09日
    浏览(40)
  • Python+OpenCV 实现图像位平面分层进行图像信息隐藏

     闲言:这篇博客回归了传统图像处理领域,主要是在研究生的数字图像处理课程上接触到了新的知识–图像位平面,觉得还挺有意思的,可以用来做信息隐藏,索性记录一下。因为拖延的缘故,到学期末才赶出来一篇,后续可能还会有一篇消除图像摩尔纹的trick介绍(如果

    2024年02月11日
    浏览(28)
  • 计算机视觉与深度学习-图像分割-视觉识别任务01-语义分割-【北邮鲁鹏】

    给每个像素分配类别标签。 不区分实例,只考虑像素类别。 滑动窗口缺点 重叠区域的特征反复被计算,效率很低。 所以针对该问题提出了新的解决方案–全卷积。 让整个网络只包含卷积层,一次性输出所有像素的类别预测。 全卷积优点 不用将图片分为一个个小区域然后再

    2024年02月07日
    浏览(63)
  • ChatGPT在语义理解和信息提取中的应用如何?

    ChatGPT在语义理解和信息提取领域有着广泛的应用潜力。语义理解是指对文本进行深层次的理解,包括词义、句义和篇章义等层面的理解。信息提取是指从文本中自动抽取结构化的信息,如实体、关系、事件等。ChatGPT作为一种预训练语言模型,具有丰富的语义理解和上下文感

    2024年02月15日
    浏览(27)
  • NLP语义识别在人工智能领域中的应用与前景

    自然语言处理(NLP)是人工智能领域中的一个重要分支,它致力于让计算机能够理解并处理人类自然语言。语义识别是NLP中的一个重要技术,它可以使计算机更好地理解人类语言的含义和意图。在本文中,我们将探讨NLP语义识别在人工智能领域中的应用和前景。 一、应用领域

    2024年02月02日
    浏览(48)
  • 图像分割与语义分割在计算机视觉中的应用

    计算机视觉(Computer Vision)是人工智能领域的一个重要分支,它旨在让计算机理解和解释人类世界中的视觉信息。图像分割(Image Segmentation)和语义分割(Semantic Segmentation)是计算机视觉中的两个重要技术,它们涉及将图像中的不同部分分为不同的类别,以便计算机更好地理解图像的

    2024年03月12日
    浏览(51)
  • 浅谈语义分割、图像分类与目标检测中的TP、TN、FP、FN

    TP:正确地预测出了正类,即原本是正类,识别的也是正类 TN:正确地预测出了负类,即原本是负类,识别的也是负类 FP:错误地预测为了正类,即原本是负类,识别的是正类 FN:错误地预测为了负类,即原本是正类,识别成了负类 代码可见:一整套计算correct, labeled, inter,

    2024年02月19日
    浏览(31)
  • 中文自然语言处理(NLP)中的命名实体识别(NER)任务中,加入注意力(attention)机制

    在中文自然语言处理(NLP)中的命名实体识别(NER)任务中,加入注意力(attention)机制可以极大地提升模型的性能。注意力机制可以帮助模型更好地捕捉序列中的关键信息和上下文依赖关系,从而提高对命名实体的识别准确度。下面是一些关于注意力机制的具体作用和不同

    2024年01月25日
    浏览(43)
  • 图像识别技术在医疗领域的革命:探索医学影像诊断的未来

    导言: 随着人工智能和计算机视觉的快速发展,图像识别技术在医疗领域正掀起一场革命。医学影像诊断是医疗工作中的重要环节,而图像识别技术的引入为医生提供了更准确、高效的辅助手段。本文将深入探讨图像识别技术在医疗领域的应用,以及它对医学影像诊断的革命

    2024年02月11日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包