索引堆及其优化(Java 实例代码)

这篇具有很好参考价值的文章主要介绍了索引堆及其优化(Java 实例代码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

 

索引堆及其优化

一、概念及其介绍

二、适用说明

三、结构图示

四、Java 实例代码

src/runoob/heap/IndexMaxHeap.java 文件代码:


 

索引堆及其优化

一、概念及其介绍

索引堆是对堆这个数据结构的优化。

索引堆使用了一个新的 int 类型的数组,用于存放索引信息。

相较于堆,优点如下:

  • 优化了交换元素的消耗。
  • 加入的数据位置固定,方便寻找。

二、适用说明

如果堆中存储的元素较大,那么进行交换就要消耗大量的时间,这个时候可以用索引堆的数据结构进行替代,堆中存储的是数组的索引,我们相应操作的是索引。

三、结构图示

 

索引堆及其优化(Java 实例代码),JAVA,数据结构与算法,python,java,算法

我们需要对之前堆的代码实现进行改造,换成直接操作索引的思维。首先构造函数添加索引数组属性 indexes。

protected T[] data;      // 最大索引堆中的数据
protected int[] indexes;    // 最大索引堆中的索引
protected int count;
protected int capacity;

相应构造函数调整为,添加初始化索引数组。

...
public IndexMaxHeap(int capacity){
    data = (T[])new Comparable[capacity+1];
    indexes = new int[capacity+1];
    count = 0;
    this.capacity = capacity;
}
...

调整插入操作,indexes 数组中添加的元素是真实 data 数组的索引 indexes[count+1] = i。

...
// 向最大索引堆中插入一个新的元素, 新元素的索引为i, 元素为item
// 传入的i对用户而言,是从0索引的
public void insert(int i, Item item){
    assert count + 1 <= capacity;
    assert i + 1 >= 1 && i + 1 <= capacity;
    i += 1;
    data[i] = item;
    indexes[count+1] = i;
    count ++;
    shiftUp(count);
}
...

调整 shift up 操作:比较的是 data 数组中父节点数据的大小,所以需要表示为 data[index[k/2]] < data[indexs[k]],交换 index 数组的索引,对 data 数组不产生任何变动,shift down 同理。

...
//k是堆的索引
// 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
private void shiftUp(int k){

    while( k > 1 && data[indexes[k/2]].compareTo(data[indexes[k]]) < 0 ){
        swapIndexes(k, k/2);
        k /= 2;
    }
}
...

从索引堆中取出元素,对大元素为根元素 data[index[1]] 中的数据,然后再交换索引位置进行 shift down 操作。

...
public T extractMax(){
    assert count > 0;
    T ret = data[indexes[1]];
    swapIndexes( 1 , count );
    count --;
    shiftDown(1);
    return ret;
}
...

也可以直接取出最大值的 data 数组索引值

...
// 从最大索引堆中取出堆顶元素的索引
public int extractMaxIndex(){
    assert count > 0;
    int ret = indexes[1] - 1;
    swapIndexes( 1 , count );
    count --;
    shiftDown(1);
    return ret;
}
...

修改索引位置数据

...
// 将最大索引堆中索引为i的元素修改为newItem
public void change( int i , Item newItem ){
    i += 1;
    data[i] = newItem;
    // 找到indexes[j] = i, j表示data[i]在堆中的位置
    // 之后shiftUp(j), 再shiftDown(j)
    for( int j = 1 ; j <= count ; j ++ )
        if( indexes[j] == i ){
            shiftUp(j);
            shiftDown(j);
            return;
        }
}
...

四、Java 实例代码

源码包下载:Downloadhttps://www.runoob.com/wp-content/uploads/2020/09/runoob-algorithm-IndexMaxHeap.zip

src/runoob/heap/IndexMaxHeap.java 文件代码:

package runoob.heap;

import java.util.Arrays;

/**
 * 索引堆
 */
// 最大索引堆,思路:元素比较的是data数据,元素交换的是索引
public class IndexMaxHeap<T extends Comparable> {

    protected T[] data;      // 最大索引堆中的数据
    protected int[] indexes;    // 最大索引堆中的索引
    protected int count;
    protected int capacity;

    // 构造函数, 构造一个空堆, 可容纳capacity个元素
    public IndexMaxHeap(int capacity){
        data = (T[])new Comparable[capacity+1];
        indexes = new int[capacity+1];
        count = 0;
        this.capacity = capacity;
    }

    // 返回索引堆中的元素个数
    public int size(){
        return count;
    }

    // 返回一个布尔值, 表示索引堆中是否为空
    public boolean isEmpty(){
        return count == 0;
    }

    // 向最大索引堆中插入一个新的元素, 新元素的索引为i, 元素为item
    // 传入的i对用户而言,是从0索引的
    public void insert(int i, T item){

        assert count + 1 <= capacity;
        assert i + 1 >= 1 && i + 1 <= capacity;

        i += 1;
        data[i] = item;
        indexes[count+1] = i;
        count ++;



        shiftUp(count);
    }

    // 从最大索引堆中取出堆顶元素, 即索引堆中所存储的最大数据
    public T extractMax(){
        assert count > 0;

        T ret = data[indexes[1]];
        swapIndexes( 1 , count );
        count --;
        shiftDown(1);

        return ret;
    }

    // 从最大索引堆中取出堆顶元素的索引
    public int extractMaxIndex(){
        assert count > 0;

        int ret = indexes[1] - 1;
        swapIndexes( 1 , count );
        count --;
        shiftDown(1);

        return ret;
    }

    // 获取最大索引堆中的堆顶元素
    public T getMax(){
        assert count > 0;
        return data[indexes[1]];
    }

    // 获取最大索引堆中的堆顶元素的索引
    public int getMaxIndex(){
        assert count > 0;
        return indexes[1]-1;
    }

    // 获取最大索引堆中索引为i的元素
    public T getItem( int i ){
        assert i + 1 >= 1 && i + 1 <= capacity;
        return data[i+1];
    }

    // 将最大索引堆中索引为i的元素修改为newItem
    public void change( int i , T newItem ){
        i += 1;
        data[i] = newItem;
        // 找到indexes[j] = i, j表示data[i]在堆中的位置
        // 之后shiftUp(j), 再shiftDown(j)
        for( int j = 1 ; j <= count ; j ++ )
            if( indexes[j] == i ){
                shiftUp(j);
                shiftDown(j);
                return;
            }
    }

    // 交换索引堆中的索引i和j
    private void swapIndexes(int i, int j){
        int t = indexes[i];
        indexes[i] = indexes[j];
        indexes[j] = t;
    }

    //********************
    //* 最大索引堆核心辅助函数
    //********************
    //k是堆的索引
    // 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
    private void shiftUp(int k){

        while( k > 1 && data[indexes[k/2]].compareTo(data[indexes[k]]) < 0 ){
            swapIndexes(k, k/2);
            k /= 2;
        }
    }

    // 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
    private void shiftDown(int k){

        while( 2*k <= count ){
            int j = 2*k;
            if( j+1 <= count && data[indexes[j+1]].compareTo(data[indexes[j]]) > 0 )
                j ++;

            if( data[indexes[k]].compareTo(data[indexes[j]]) >= 0 )
                break;

            swapIndexes(k, j);
            k = j;
        }
    }

    // 测试 IndexMaxHeap
    public static void main(String[] args) {

        int N = 1000000;
        IndexMaxHeap<Integer> indexMaxHeap = new IndexMaxHeap<Integer>(N);
        for( int i = 0 ; i < N ; i ++ )
            indexMaxHeap.insert( i , (int)(Math.random()*N) );
 
    }
}

上述修改索引位置在查找索引位置我们使用了遍历,效率不高。我们还可以再优化一遍,维护一组 reverse[i] 数组,表示索引 i 在 indexes(堆) 中的位置,把查找的时间复杂度降为 O(1)。

 

索引堆及其优化(Java 实例代码),JAVA,数据结构与算法,python,java,算法

有如下性质:

indexes[i] = j
reverse[j] = i

indexes[reverse[i]] = i
reverse[indexes[i]] = i

 文章来源地址https://www.toymoban.com/news/detail-693128.html

到了这里,关于索引堆及其优化(Java 实例代码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • MySQL的索引——索引的介绍及其数据结构B+树 & 索引的类型 & 索引的使用及其失效场景 & 相关名词解释

    索引是存储引擎用于快速查找数据纪录的一种数据结构,索引是数据库中经常提及的一个词,究竟什么是索引,索引的数据结构是什么,索引有什么类型? 本篇博客尝试阐述数据库索引的相关内容,涉及什么是索引,索引的数据结构;对比了聚集索引和非聚集索引,分析了索

    2024年02月20日
    浏览(43)
  • java八股文面试[数据结构]——HashMap扩容优化

         知识来源: 【2023年面试】HashMap在扩容上做了哪些优化_哔哩哔哩_bilibili  

    2024年02月11日
    浏览(39)
  • 【数据结构】| 并查集及其优化实现

    以一个直观的问题来引入并查集的概念。 亲戚问题:有一群人,他们属于不同家族,同一个家族里的人互为亲戚,不同家族的人不是亲戚。随机指定两个人,问他们是否有亲戚关系。 以下图3个不相交的集合表示 3 个家族,当询问两个人是否有亲戚关系时,也就是问两个元素

    2024年02月09日
    浏览(40)
  • 【MySQL索引与优化篇】InnoDB数据存储结构

    索引结构给我们提供了高效的索引方式,不过索引信息以及数据记录都是保存在文件上的,确切说是存储在页结构中。另一方面,索引是在存储引擎中实现的,MySQL服务器上的 存储引擎 负责对表中数据的读取和写入工作。不同存储引擎中 存放的格式 一般是不同的。 由于 I

    2024年02月07日
    浏览(53)
  • 数据结构:图解手撕B-树以及B树的优化和索引

    本篇总结的内容是 B-树 回忆一下前面的搜索结构,有哈希,红黑树,二分…等很多的搜索结构,而实际上这样的结构对于数据量不是很大的情况是比较适用的,但是假设有一组很大的数据,大到已经不能在内存中存储,此时应该如何处理呢?可以考虑将及其映射的数据

    2024年02月21日
    浏览(29)
  • 数据结构例题代码及其讲解-链表

    单链表的结构体定义及其初始化。 ①强调结点 LNode *p; ②强调链表 LinkList p; 01 遍历打印 02 按位查找(有一个带头结点的单链表 L,请设计一个算法查找其第 i 个结点位置,若存在则返回指向该结点的指针,若不存在则返回 NULL。) 03 按值查找(有一个带头结点的单链表 L,请

    2024年02月10日
    浏览(55)
  • 数据结构例题代码及其讲解-顺序表

    静态分配内存及初始化 动态分配内存及初始化 01 对顺序表L进行遍历并输出每个数据元素的数据值 02 假设有一个顺序表L,其存储的所有数据元素均为不重复的正数,查找 L 中值为 e 的数据元素,若找到则返回其下标,若找不到则返回-1。 03 假设有一个顺序表 L,其存储的所有

    2024年02月10日
    浏览(42)
  • 算法 数据结构 递归插入排序 java插入排序 递归求解插入排序算法 如何用递归写插入排序 插入排序动图 插入排序优化 数据结构(十)

    1. 插入排序(insertion-sort):                                           是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入     算法稳定性:                  

    2024年02月09日
    浏览(56)
  • 数据结构例题代码及其讲解-递归与树

    ​ 树的很多题目中都包含递归的思想 递归 递归包括 递归边界 以及 递归式 即:往下递,往上归 递归写法的特点: 写起来代码较短,但是时间复杂度较高 01 利用递归求解 n 的阶乘。 02 斐波那契数列是满足 F(0)=1,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2)的数列,数列的前几项为 1,1,2,

    2024年02月09日
    浏览(56)
  • 数据结构例题代码及其讲解-栈与队列

    栈Stack 后进先出 ​ 栈的结构体定义及基本操作。 初始化 ​ 这里初始化时是将栈顶指针指向-1,有些则是指向0,因此后续入栈出栈的代码略微有点区别 判断栈是否为空 压栈操作 由于初始时栈顶指针指向-1,因此需要先变化栈顶指针,然后入栈操作; 且当MaxSize为50时候,数

    2024年02月10日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包