贝叶斯神经网络 - 捕捉现实世界的不确定性

这篇具有很好参考价值的文章主要介绍了贝叶斯神经网络 - 捕捉现实世界的不确定性。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

贝叶斯神经网络 - 捕捉现实世界的不确定性 Bayesian Neural Networks 生活本质上是不确定性和概率性的,贝叶斯神经网络 (BNN) 旨在捕获和量化这种不确定性

在许多现实世界的应用中,仅仅做出预测是不够的;您还想知道您对该预测的信心有多大。例如,在医疗保健领域,如果模型表示患者有 70% 的机会患上某种特定疾病,那么其信息量就低于表示患者有 70% 的机会但误差范围为 ±10% 的模型。

贝叶斯神经网络 - 捕捉现实世界的不确定性,后端

BNN 不太容易过度拟合,可以提高数据效率,因为它们可以合并先验,并且可以输出每个预测的概率分布。了解特定预测准确的不确定性或概率可以建立业务用户的信任和信心。

那么贝叶斯网络是如何工作的呢? 核心思想是用概率分布 P (w) 代替标准神经网络中的固定权重 w

贝叶斯著名的方程是:

P (A| B)= P (B|A) P (A) / P(B)

在 BNN 的背景下:

A 是模型参数(权重和偏差)。 B 是观测数据。 P (A ∣B)是给定数据的参数的后验分布。 P (B ∣ A) 是给定参数的数据的可能性。 P (A) 是参数的先验分布。 P (B)是证据,通常被认为是归一化常数。

先验分布 - 您从权重的先验分布 P (w) 开始。这代表您在看到任何数据之前对模型参数的最初信念。

后验分布 - 目标是计算后验分布 P (w ∣D) ,它表示观察数据 D 后关于权重的更新信念。贝叶斯定理以及一些近似方法用于计算该分布。

预测 - 最后,为了对新输入 x 进行预测,您可以对所有可能的权重进行平均,并按后验概率进行加权:

P (y ∣ x, D)=∫ P (y ∣ x,w)×P (w ∣D) dw

这不仅为您提供了点估计,还为您提供了可能输出 y 的分布,从而捕获了模型的不确定性。

例如:BNN 可以应用于 MRI 扫描数据集,其中每次扫描都标记为“癌症”或“无癌症”。目标是建立一个模型,可以预测新的、未标记的 MRI 扫描的这些标签。 BNN 可以说,“我 80% 确定这是癌症,但有 20% 的可能性不是”,这对临床医生来说是很有价值的信息。

当不确定性量化很重要时,BNN 非常有用,包括疾病诊断、风险评估、能源预测和实时决策

本文由 mdnice 多平台发布文章来源地址https://www.toymoban.com/news/detail-693177.html

到了这里,关于贝叶斯神经网络 - 捕捉现实世界的不确定性的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包