分析&回答
Flink 反压机制
Flink 如何处理反压?
Storm 反压机制
Storm反压机制
Storm 在每一个 Bolt 都会有一个监测反压的线程(Backpressure Thread),这个线程一但检测到 Bolt 里的接收队列(recv queue)出现了严重阻塞就会把这个情况写到 ZooKeeper 里,ZooKeeper 会一直被 Spout 监听,监听到有反压的情况就会停止发送。因此,通过这样的方式匹配上下游的发送接收速率。
Storm 提供的最基本的处理 stream 的原语是 spout 和 bolt。
①spout 是流的源头。 通常 spout 从外部数据源(队列、数据库等)读取数据,然后封装成Tuple形式,之后发送到Stream中。
② bolt 处理输入的Stream,并产生新的输出Stream。bolt 可以执行Filter、Map、Join等操作。bolt 是一个被动的 角色,其接口中有一个execute(Tuple input)方法,在接收到消息之后会调用此函数,用户可以在此方法中执行自己的处理逻辑。
Spark Streaming 反压机制
Spark streaming反压机制
组件 RateController 监听负责监听“OnBatchCompleted”事件,然后从中抽取processingDelay 及schedulingDelay信息。RateEstimator 依据这些信息估算出最大处理速度(rate),最后由基于Receiver的Input Stream 将 rate 转发给 Executor 的 BlockGenerator,并更新RateLimiter。
对比Flink、Storm、Spark Streaming 的反压机制
Flink、Storm、Spark Streaming 的反压机制都采用动态反馈/自动反压原理,可以动态反映节点限流情况,进而实现自动的动态反压。
Flink、Storm、Spark Streaming 反压机制的区别
① Flink 是天然的流处理引擎,数据传输的过程相当于提供了反压,类似管道里的水(下游流动慢自然导致下游也慢),所以不需要一种特殊的机制来处理反压。
② Storm 利用 Zookeeper 组件和流量监控的线程实现反压机制,其中存在的问题有实现复杂、bolt 接收队列暴涨导致OOM、反压慢。
③ Spark Streaming 是微批处理,可以根据前一批次数据的处理情况,动态、自动的调整后续数据的摄入量,其中存在的问题有实现复杂、时效性较差。文章来源:https://www.toymoban.com/news/detail-693278.html
喵呜面试助手:一站式解决面试问题,你可以搜索微信小程序 [喵呜面试助手] 或关注 [喵呜刷题] -> 面试助手 免费刷题。如有好的面试知识或技巧期待您的共享!文章来源地址https://www.toymoban.com/news/detail-693278.html
到了这里,关于对比Flink、Storm、Spark Streaming 的反压机制的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!