对比Flink、Storm、Spark Streaming 的反压机制

这篇具有很好参考价值的文章主要介绍了对比Flink、Storm、Spark Streaming 的反压机制。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分析&回答

Flink 反压机制

Flink 如何处理反压?

Storm 反压机制

对比Flink、Storm、Spark Streaming 的反压机制,大数据,flink,storm,spark

Storm反压机制

 Storm 在每一个 Bolt 都会有一个监测反压的线程(Backpressure Thread),这个线程一但检测到 Bolt 里的接收队列(recv queue)出现了严重阻塞就会把这个情况写到 ZooKeeper 里,ZooKeeper 会一直被 Spout 监听,监听到有反压的情况就会停止发送。因此,通过这样的方式匹配上下游的发送接收速率。

Storm 提供的最基本的处理 stream 的原语是 spout 和 bolt。

spout 是流的源头。 通常 spout 从外部数据源(队列、数据库等)读取数据,然后封装成Tuple形式,之后发送到Stream中。

② bolt 处理输入的Stream,并产生新的输出Stream。bolt 可以执行Filter、Map、Join等操作。bolt 是一个被动的 角色,其接口中有一个execute(Tuple input)方法,在接收到消息之后会调用此函数,用户可以在此方法中执行自己的处理逻辑。

Spark Streaming 反压机制

对比Flink、Storm、Spark Streaming 的反压机制,大数据,flink,storm,spark

Spark streaming反压机制

组件 RateController 监听负责监听“OnBatchCompleted”事件,然后从中抽取processingDelay 及schedulingDelay信息。RateEstimator 依据这些信息估算出最大处理速度(rate),最后由基于Receiver的Input Stream 将 rate 转发给 Executor 的 BlockGenerator,并更新RateLimiter

对比Flink、Storm、Spark Streaming 的反压机制

Flink、Storm、Spark Streaming 的反压机制都采用动态反馈/自动反压原理,可以动态反映节点限流情况,进而实现自动的动态反压。

Flink、Storm、Spark Streaming 反压机制的区别

Flink 是天然的流处理引擎,数据传输的过程相当于提供了反压,类似管道里的水(下游流动慢自然导致下游也慢),所以不需要一种特殊的机制来处理反压。

② Storm 利用 Zookeeper 组件和流量监控的线程实现反压机制,其中存在的问题有实现复杂、bolt 接收队列暴涨导致OOM、反压慢

Spark Streaming 是微批处理,可以根据前一批次数据的处理情况,动态、自动的调整后续数据的摄入量,其中存在的问题有实现复杂、时效性较差。

喵呜面试助手:一站式解决面试问题,你可以搜索微信小程序 [喵呜面试助手] 或关注 [喵呜刷题] -> 面试助手 免费刷题。如有好的面试知识或技巧期待您的共享!文章来源地址https://www.toymoban.com/news/detail-693278.html

到了这里,关于对比Flink、Storm、Spark Streaming 的反压机制的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Hadoop、Spark、Storm、Flink区别及选择

    hadoop和spark是更偏向于对大量离线数据进行批量计算,提高计算速度 storm和flink适用于实时在线数据,即针对源源不断产生的数据进行实时处理。至于storm和flink之间的区别在于flink的实时性和吞吐量等要比storm高。 上述四个组件的实时性高低顺序如下: hadoop spark storm flink hdf

    2024年02月08日
    浏览(42)
  • 什么是API网关,解释API网关的作用和特点?解释什么是数据流处理,如Apache Flink和Spark Streaming的应用?

    API网关是一种在分布式系统中的组件,用于管理不同系统之间的通信和交互。API网关的作用是在不同系统之间提供统一的接口和协议,从而简化系统之间的集成和互操作性。 API网关的特点包括: 路由和分发请求:API网关可以根据请求的URL、方法、参数等信息,将请求分发到

    2024年02月11日
    浏览(48)
  • Flink与Spark Streaming在与kafka结合的区别!

    首先,我们先看下图,这是一张生产消息到kafka,从kafka消费消息的结构图。 当然, 这张图很简单,拿这张图的目的是从中可以得到的跟本节文章有关的消息,有以下两个: 1,kafka中的消息不是kafka主动去拉去的,而必须有生产者往kafka写消息。 2,kafka是不会主动往消费者发

    2024年04月17日
    浏览(50)
  • 如何使用Apache Kafka和Storm实时处理大规模的Twitter数据集 ?4 Streaming Large Collections of Twitter Data in RealTime

    作者:禅与计算机程序设计艺术 Twitter是一个巨大的社交媒体网站,每天都有数以亿计的用户参与其中。许多企业利用其数据的价值已经成为众矢之的。比如,广告、营销、市场调研等方面都依赖于Twitter数据。 Streaming Large Collections of Twitter Data in Real-Time with Apache Kafka and Stor

    2024年02月07日
    浏览(49)
  • spark 和 flink 的对比

             Spark 的数据模型是 弹性分布式数据集 RDD (Resilient Distributed Dattsets),这个内存数据结构使得spark可以通过固定内存做大批量计算。初期的 Spark Streaming 是通过 将数据流转成批  (micro-batches),即 收集一段时间(time-window)内到达的所有数据,并在其上进行常规批处理 ,

    2024年02月16日
    浏览(41)
  • 大数据——Spark Streaming

    Spark Streaming是一个可扩展、高吞吐、具有容错性的流式计算框架。 之前我们接触的spark-core和spark-sql都是离线批处理任务,每天定时处理数据,对于数据的实时性要求不高,一般都是T+1的。但在企业任务中存在很多的实时性的任务需求,列如双十一的京东阿里都会要求做一个

    2024年02月07日
    浏览(45)
  • Spark Streaming实时数据处理

    作者:禅与计算机程序设计艺术 Apache Spark™Streaming是一个构建在Apache Spark™之上的快速、微批次、容错的流式数据处理系统,它可以对实时数据进行高吞吐量、低延迟地处理。Spark Streaming既可用于流计算场景也可用于离线批处理场景,而且可以将结构化或无结构化数据源(如

    2024年02月06日
    浏览(54)
  • 大数据编程实验四:Spark Streaming

    一、目的与要求 1、通过实验掌握Spark Streaming的基本编程方法; 2、熟悉利用Spark Streaming处理来自不同数据源的数据。 3、熟悉DStream的各种转换操作。 4、熟悉把DStream的数据输出保存到文本文件或MySQL数据库中。 二、实验内容 1.参照教材示例,利用Spark Streaming对三种类型的基

    2024年02月03日
    浏览(53)
  • Spark Streaming实时流式数据处理

    作者:禅与计算机程序设计艺术 Apache Spark Streaming 是 Apache Spark 提供的一个用于高吞吐量、容错的流式数据处理引擎。它可以实时的接收数据并在系统内部以微批次的方式进行处理,并将结果输出到文件、数据库或实时消息系统中。Spark Streaming 支持 Java、Scala 和 Python 编程语言

    2024年02月08日
    浏览(50)
  • 大数据技术学习之Storm、Spark学习手册,这还不码住学起来

    Storm与Spark、Hadoop这三种框架,各有各的优点,每个框架都有自己的最佳应用场景。所以,在不同的应用场景下,应该选择不同的框架。 1.Storm是最佳的流式计算框架,Storm由Java和Clojure写成,Storm的优点是全内存计算,所以它的定位是分布式实时计算系统,按照Storm作者的说法

    2024年02月04日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包