机器学习课后习题 --回归

这篇具有很好参考价值的文章主要介绍了机器学习课后习题 --回归。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

(一)单选题  

1.以下()组变量之间存在线性回归关系?
A:学生的性别与他的成绩
B:儿子的身高与父亲的身高
C:正方形的边长与面积
D: 正三角形的边长与周长
 

2.回归问题和分类问题的区别是? 
A:回归问题有标签,分类问题没有
B:回归问题输出值是离散的,分类问题输出值是连续的
C:回归问题输出值是连续的,分类问题输出值是离散的
D:回归问题与分类问题在输入属性值上要求不同
 

3.以下说法错误的是?
A:残差是预测值与真实值之间的差值
B:损失函数越小,模型训练得一定越好
C:正则项的目的是为了避免模型过拟合
D:最小二乘法不需要选择学习率
 

4.哪些算法不需要数据归一化?
A:kNN
B:k-means
C:SVM
D: 决策树
 

5.以下()些方法不能用于处理欠拟合?
A:增大正则化系数
B:增加新的特征
C:增加模型复杂度
D:对特征进行变换,使用组合特征或高维特征
 

6.以下哪些方法不能用于处理过拟合?
A:对数据进行清洗
B:增大训练数据的量
C:利用正则化技术
D:增加数据属性的复杂度
 

7.下列关于线性回归分析中的残差(Residuals)说法正确的是?
选项:
A:残差均值总是为零
B:残差均值总是小于零
C:残差均值总是大于零
D:以上说法都不对
 

8.为了观察测试 Y 与 X 之间的线性关系,X 是连续变量,使用下列哪种图形比较适合?
选项:
A:散点图
B:柱形图
C:直方图
D:以上都不对
 

9.假如你在训练一个线性回归模型,则:1. 如果数据量较少,容易发生过拟合。2. 如果假设空间较小,容易发生过拟合。关于这两句话,下列说法正确的是?
选项:
A:1 和 2 都错误
B:1 正确,2 错误
C:1 错误,2 正确
D:1 和 2 都正确
 

10.关于特征选择,下列对 Ridge 回归和 Lasso 回归说法正确的是?
选项:
A:Ridge 回归适用于特征选择
B:Lasso 回归适用于特征选择
C:两个都适用于特征选择
D:以上说法都不对
 

11.构建一个最简单的线性回归模型需要几个系数(只有一个特征)?
选项:
A:1 个
B:2 个
C:3 个
D:4 个
 

12.向量x=[1,2,3,4,-9,0]的L1范数是多少?
A:1
B:19
C:6
D:根号111
 

 

 

 

 

(二)多选题 

1.以下哪些是使用数据规范化(特征缩放)的原因?
 
A:它通过降低梯度下降的每次迭代的计算成本来加速梯度下降
B:它通过减少迭代次数来获得一个好的解,从而加快了梯度下降的速度
C:它不能防止梯度下降陷入局部最优

D:它防止矩阵X^TX 不可逆(奇异/退化)
 

2.线性回归中,我们可以使用最小二乘法来求解系数,下列关于最小二乘法说法正确的是?( )
A:只适用于线性模型,不适合逻辑回归模型等其他模型
B:不需要选择学习率
C:当特征数量很多的时候,运算速度会很慢
D:不需要迭代训练

 

3.欠拟合的处理主要有哪些方式:() 
A:增加模型复杂度
B:减小正则化系数

C:增大正则化系数
D:添加新特征
 

4.假如使用一个较复杂的回归模型来拟合样本数据,使用 Ridge回归,调试正则化参数,来降低模型复杂度,若正则化系数较大时,关于偏差(bias)和方差(variance),下列说法正确的是?( )
选项:
A:偏差减小
B:偏差增大
C:方差减小

D:方差增大

(三)判断题  

1.如果两个变量相关,那么它们一定是线性关系。 
答案: 【错误】

2.随机梯度下降,每次迭代时候,使用一个样本。
答案: 【正确】

3.L2正则化往往用于防止过拟合,而L1正则化往往用于特征选择。 
答案: 【正确】

4.过拟合的处理可以通过减小正则化系数。
答案: 【错误】文章来源地址https://www.toymoban.com/news/detail-693995.html

到了这里,关于机器学习课后习题 --回归的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 吴恩达老师《机器学习》课后习题2之逻辑回归(logistic_regression)

    用于解决输出标签y为0或1的二元分类问题 判断邮件是否属于垃圾邮件? 银行卡交易是否属于诈骗? 肿瘤是否为良性? 等等。 案例:根据学生的两门学生成绩,建立一个逻辑回归模型,预测该学生是否会被大学录取 数据集:ex2data1.txt python实现逻辑回归, 目标:建立分类器(求

    2024年02月09日
    浏览(47)
  • 机器学习_数据升维_多项式回归代码_保险案例数据说明_补充_均匀分布_标准正太分布---人工智能工作笔记0038

    然后我们再来看一下官网注意上面这个旧的,现在2023-05-26 17:26:31..我去看了新的官网, scikit-learn已经添加了很多新功能,     我们说polynomial多项式回归其实是对数据,进行 升维对吧,从更多角度去看待问题,这样 提高模型的准确度. 其实y=w0x0+w1x1.. 这里就是提高了这个x的个数对吧

    2024年02月06日
    浏览(45)
  • 初识人工智能,一文读懂机器学习之逻辑回归知识文集(1)

    🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论⭐收藏 🔎 人工智能领域知识 🔎 链接 专栏 人工智能专业知识学习一 人工智能专栏 人

    2024年01月23日
    浏览(63)
  • 机器学习入门教学——人工智能、机器学习、深度学习

    1、人工智能 人工智能相当于人类的代理人,我们现在所接触到的人工智能基本上都是弱AI,主要作用是正确解释从外部获得的数据,并对这些数据加以学习和利用,以便灵活的实现特定目标和任务。 例如: 阿尔法狗、智能汽车 简单来说: 人工智能使机器像人类一样进行感

    2024年02月09日
    浏览(93)
  • 人工智能|机器学习——基于机器学习的舌苔检测

    基于深度学习的舌苔检测毕设留档.zip资源-CSDN文库 目前随着人们生活水平的不断提高,对于中医主张的理念越来越认可,对中医的需求也越来越多。在诊断中,中医通过观察人的舌头的舌质、苔质等舌象特征,了解人体内的体质信息从而对症下药。 传统中医的舌诊主要依赖

    2024年02月22日
    浏览(70)
  • 人工智能与机器学习

    欢迎关注博主 Mindtechnist 或加入【Linux C/C++/Python社区】一起探讨和分享Linux C/C++/Python/Shell编程、机器人技术、机器学习、机器视觉、嵌入式AI相关领域的知识和技术。 专栏:《机器学习》 ​ ​ ☞什么是人工智能、机器学习、深度学习 人工智能这个概念诞生于1956年的达特茅斯

    2024年02月02日
    浏览(63)
  • 【机器学习】人工智能概述

    🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 1.人工智能概述 1.1 机器学习、人工智能与深度学习 1.2 机器学习、深度学习能做些什么

    2024年02月09日
    浏览(55)
  • 机器学习--人工智能概述

    入门人工智能,了解人工智能是什么。为啥发展起来,用途是什么,是最重要也是最关键的事情。大致有以下思路。 人工智能发展历程 机器学习定义以及应用场景 监督学习,无监督学习 监督学习中的分类、回归特点 知道机器学习的开发流程 人工智能在现实生活中的应用

    2024年01月19日
    浏览(60)
  • 人工智能与机器人|机器学习

    原文链接: https://mp.weixin.qq.com/s/PB_n8woxdsWPtrmL8BbehA 机器学习下包含神经网络、深度学习等,他们之间的关系表示如图2-7所示。 图2-7 关系图 那么什么是机器学习、深度学习、他们的区别又是什么呢? 2.7.1 什么是机器学习? 机器学习是 人工智能 (AI) 和计算机科学的一个分支,

    2024年02月06日
    浏览(79)
  • 人工智能、机器学习、深度学习的区别

    人工智能涵盖范围最广,它包含了机器学习;而机器学习是人工智能的重要研究内容,它又包含了深度学习。 人工智能是一门以计算机科学为基础,融合了数学、神经学、心理学、控制学等多个科目的交叉学科。 人工智能是一门致力于使计算机能够模拟、模仿人类智能的学

    2024年02月08日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包