时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测

这篇具有很好参考价值的文章主要介绍了时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测

效果一览

时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测,时间序列,QPSO-BiGRU,PSO-BiGRU,BiGRU,时间序列预测
时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测,时间序列,QPSO-BiGRU,PSO-BiGRU,BiGRU,时间序列预测

时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测,时间序列,QPSO-BiGRU,PSO-BiGRU,BiGRU,时间序列预测
时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测,时间序列,QPSO-BiGRU,PSO-BiGRU,BiGRU,时间序列预测
时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测,时间序列,QPSO-BiGRU,PSO-BiGRU,BiGRU,时间序列预测

时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测,时间序列,QPSO-BiGRU,PSO-BiGRU,BiGRU,时间序列预测
时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测,时间序列,QPSO-BiGRU,PSO-BiGRU,BiGRU,时间序列预测
时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测,时间序列,QPSO-BiGRU,PSO-BiGRU,BiGRU,时间序列预测
时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测,时间序列,QPSO-BiGRU,PSO-BiGRU,BiGRU,时间序列预测
时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测,时间序列,QPSO-BiGRU,PSO-BiGRU,BiGRU,时间序列预测

时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测,时间序列,QPSO-BiGRU,PSO-BiGRU,BiGRU,时间序列预测

时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测,时间序列,QPSO-BiGRU,PSO-BiGRU,BiGRU,时间序列预测

基本描述

1.时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测;
2.单变量时间序列数据集;
3.运行环境Matlab2020及以上,依次运行Main1GRUTS、Main2PSOBiGRUTS、Main3QPSOBiGRUTS、Main4CDM即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集,单变量时间序列;
BiGRU(双向门控循环单元模型)与粒子群算法优化后的BiGRU(PSOBiGRU)以及量子粒子群算法优化后的BiGRU(QPSOBiGRU)对比实验,可用于风电、光伏等负荷预测,时序预测,数据为单变量时间序列数据集,PSO、QPSO优化超参数为隐含层1节点数、隐含层2节点数、最大迭代次数和学习率。
4.命令窗口输出MAE、MAPE、RMSE和R2;

程序设计

  • 完整程序和数据下载:私信博主回复MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测
Function_name='F1'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper) 设定适应度函数
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);  %设定边界以及优化函数

N=20;
M=1000;
[xm1,trace1]=pso(N,M,dim,lb,ub,fobj);
[xm2,trace2]=qpso(N,M,dim,lb,ub,fobj);

figure('Position',[269   240   660   290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])

%Draw objective space
subplot(1,2,2);
plot(trace1,'Color','b','linewidth',1.5)
hold on
plot(trace2,'Color','r','linewidth',1.5)
title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');

axis tight
grid on
box on
legend('PSO','QPSO')

%% 取对数 更方便看
figure
plot(log10(trace1),'linewidth',1.5)
hold on
plot(log10(trace2),'linewidth',1.5)
legend('PSO','QPSO')
title('PSO VS QPSO')
xlabel('iteration/M')
ylabel('fitness value(log10)')
function func_plot(func_name)

[lb,ub,dim,fobj]=Get_Functions_details(func_name);

switch func_name 
    case 'F1' 
        x=-100:2:100; y=x; %[-100,100]
        
    case 'F2' 
        x=-100:2:100; y=x; %[-10,10]
        
    case 'F3' 
        x=-100:2:100; y=x; %[-100,100]
        
    case 'F4' 
        x=-100:2:100; y=x; %[-100,100]
    case 'F5' 
        x=-200:2:200; y=x; %[-5,5]
    case 'F6' 
        x=-100:2:100; y=x; %[-100,100]
    case 'F7' 
        x=-1:0.03:1;  y=x  %[-1,1]
    case 'F8' 
        x=-500:10:500;y=x; %[-500,500]
    case 'F9' 
        x=-5:0.1:5;   y=x; %[-5,5]    
    case 'F10' 
        x=-20:0.5:20; y=x;%[-500,500]
    case 'F11' 
        x=-500:10:500; y=x;%[-0.5,0.5]
    case 'F12' 
        x=-10:0.1:10; y=x;%[-pi,pi]
    case 'F13' 
        x=-5:0.08:5; y=x;%[-3,1]
    case 'F14' 
        x=-100:2:100; y=x;%[-100,100]
    case 'F15' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F16' 
        x=-1:0.01:1; y=x;%[-5,5]
    case 'F17' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F18' 
        x=-5:0.06:5; y=x;%[-5,5]
    case 'F19' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F20' 
        x=-5:0.1:5; y=x;%[-5,5]        
    case 'F21' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F22' 
        x=-5:0.1:5; y=x;%[-5,5]     
    case 'F23' 
        x=-5:0.1:5; y=x;%[-5,5]  
end    

    

L=length(x);
f=[];

for i=1:L
    for j=1:L
        if strcmp(func_name,'F15')==0 && strcmp(func_name,'F19')==0 && strcmp(func_name,'F20')==0 && strcmp(func_name,'F21')==0 && strcmp(func_name,'F22')==0 && strcmp(func_name,'F23')==0
            f(i,j)=fobj([x(i),y(j)]);
        end
        if strcmp(func_name,'F15')==1
            f(i,j)=fobj([x(i),y(j),0,0]);
        end
        if strcmp(func_name,'F19')==1
            f(i,j)=fobj([x(i),y(j),0]);
        end
        if strcmp(func_name,'F20')==1
            f(i,j)=fobj([x(i),y(j),0,0,0,0]);
        end       
        if strcmp(func_name,'F21')==1 || strcmp(func_name,'F22')==1 ||strcmp(func_name,'F23')==1
            f(i,j)=fobj([x(i),y(j),0,0]);
        end          
    end
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127596777?spm=1001.2014.3001.5501
[2] https://download.csdn.net/download/kjm13182345320/86830096?spm=1001.2014.3001.5501文章来源地址https://www.toymoban.com/news/detail-694384.html

到了这里,关于时序预测 | MATLAB实现基于QPSO-BiGRU、PSO-BiGRU、BiGRU时间序列预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 时序预测 | MATLAB实现TCN-BiGRU时间卷积双向门控循环单元时间序列预测

    预测效果 基本介绍 1.MATLAB实现TCN-BiGRU时间卷积双向门控循环单元时间序列预测; 2.运行环境为Matlab2021b; 3.单变量时间序列预测; 4.data为数据集,excel数据,单变量时间序列,MainTCN_BiGRUTS.m为主程序,运行即可,所有文件放在一个文件夹; 5.命令窗口输出R2、MSE、RMSE、MAE、MAP

    2024年02月10日
    浏览(46)
  • 多维时序 | MATLAB实现CNN-BiGRU-Attention多变量时间序列预测

    预测效果 基本介绍 MATLAB实现CNN-BiGRU-Attention多变量时间序列预测,CNN-BiGRU-Attention结合注意力机制多变量时间序列预测。 模型描述 Matlab实现CNN-BiGRU-Attention多变量时间序列预测 1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测

    2024年02月13日
    浏览(48)
  • 多维时序 | MATLAB实现PSO-CNN-BiGRU多变量时间序列预测

    预测效果 基本介绍 1.多维时序 | MATLAB实现PSO-CNN-BiGRU多变量时间序列预测; 2.运行环境为Matlab2020b; 3.基于粒子群优化算法(PSO)、卷积神经网络(CNN)和双向门控循环单元网络(BiGRU)的超前24步多变量时间序列回归预测算法; 4.多变量特征输入,单序列变量输出,输入前一

    2024年02月12日
    浏览(49)
  • 时序预测 | MATLAB实现POA-CNN-BiGRU鹈鹕算法优化卷积双向门控循环单元时间序列预测

    预测效果 基本介绍 MATLAB实现POA-CNN-BiGRU鹈鹕算法优化卷积双向门控循环单元时间序列预测(完整源码和数据) 1.MATLAB实现POA-CNN-BiGRU鹈鹕算法优化卷积双向门控循环单元时间序列预测(完整源码和数据) 2.输入输出单个变量,时间序列预测预测; 3.多指标评价,评价指标包括:

    2024年02月07日
    浏览(44)
  • 时序预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元时间序列预测

    预测效果 基本介绍 时序预测 | MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元时间序列预测,运行环境Matlab2020b及以上。优化正则化率、学习率、隐藏层单元数。 1.MATLAB实现WOA-CNN-BiGRU鲸鱼算法优化卷积双向门控循环单元多输入单输出时间序列预测 2.单变量时间序列预

    2024年02月12日
    浏览(53)
  • 多维时序 | MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测

    预测效果 基本介绍 1.Matlab基于ZOA-CNN-BiGRU-Attention斑马优化卷积双向门控循环单元网络融合注意力机制的多变量时间序列预测算法, 2.要求2021版以上。多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测,对卷积核大小、BiGRU神经元个数、

    2024年02月13日
    浏览(54)
  • 多维时序 | MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测

    预测效果 基本介绍 MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测,KOA-CNN-BiGRU-Attention结合注意力机制多变量时间序列预测。 模型描述 MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测 1.程序平台:适用于MATLAB 2023版及以上版本; 2.基于开普勒优化算法(KOA)、卷积神经网络(

    2024年02月12日
    浏览(44)
  • 回归预测 | MATLAB实现基于QPSO-LSTM、PSO-LSTM、LSTM多输入单输出回归预测

    效果一览 基本描述 1.Matlab实现QPSO-LSTM、PSO-LSTM和LSTM神经网络时间序列预测; 2.输入数据为多输入单输出数据; 3.运行环境Matlab2020及以上,依次运行Main1LSTMNN、Main2PSOLSTMNN、Main3QPSOLSTMNN、Main4CDM即可,其余为函数文件无需运行,所有程序放在一个文件夹,data为数据集,输入多个特征

    2024年02月09日
    浏览(59)
  • 基于量子粒子群算法(QPSO)优化LSTM的风电、负荷等时间序列预测算法(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 本文基于

    2024年02月11日
    浏览(41)
  • 区间预测 | MATLAB实现基于QRCNN-BiGRU卷积双向门控循环单元多变量时间序列区间预测

    效果一览 基本介绍 1.Matlab实现基于CNN-BiGRU-KDE卷积神经网络结合双向门控循环单元多变量时间序列区间预测; 2.多图输出、点预测多指标输出(MAE、MAPE、RMSE、MSE、R2),区间预测多指比输出(区间覆盖率PICP、区间平均宽度百分比PINAW),多输入单输出,含点预测图、不同置信区

    2024年02月08日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包