学习目标
- 理解图像的特征
- 知道图像的角点
1 图像的特征
大多数人都玩过拼图游戏。首先拿到完整图像的碎片,然后把这些碎片以正确的方式排列起来从而重建这幅图像。如果把拼图游戏的原理写成计算机程序,那计算机就也会玩拼图游戏了。
在拼图时,我们要寻找一些唯一的特征,这些特征要适于被跟踪,容易被比较。我们在一副图像中搜索这样的特征,找到它们,而且也能在其他图像中找到这些特征,然后再把它们拼接到一起。我们的这些能力都是天生的。
那这些特征是什么呢?我们希望这些特征也能被计算机理解。
如果我们深入的观察一些图像并搜索不同的区域,以下图为例:
在图像的上方给出了六个小图。找到这些小图在原始图像中的位置。你能找到多少正确结果呢?
A A A 和 B B B 是平面,而且它们的图像中很多地方都存在。很难找到这些小图的准确位置。
C C C 和 D D D 也很简单。它们是建筑的边缘。可以找到它们的近似位置,但是准确位置还是很难找到。这是因为:沿着边缘,所有的地方都一样。所以边缘是比平面更好的特征,但是还不够好。
最后 E E E 和 F F F 是建筑的一些角点。它们能很容易的被找到。因为在角点的地方,无论你向哪个方向移动小图,结果都会有很大的不同。所以可以把它们当成一个好的特征。为了更好的理解这个概念我们再举个更简单的例子。
如上图所示,蓝色框中的区域是一个平面很难被找到和跟踪。无论向哪个方向移动蓝色框,都是一样的。对于黑色框中的区域,它是一个边缘。如果沿垂直方向移动,它会改变。但是如果沿水平方向移动就不会改变。而红色框中的角点,无论你向那个方向移动,得到的结果都不同,这说明它是唯一的。 所以,我们说角点是一个好的图像特征,也就回答了前面的问题。
角点是图像很重要的特征,对图像图形的理解和分析有很重要的作用。角点在三维场景重建运动估计,目标跟踪、目标识别、图像配准与匹配等计算机视觉领域起着非常重要的作用。在现实世界中,角点对应于物体的拐角,道路的十字路口、丁字路口等
那我们怎样找到这些角点呢?接下来我们使用 OpenCV 中的各种算法来查找图像的特征,并对它们进行描述。
总结
-
图像特征
图像特征要有区分性,容易被比较。一般认为角点,斑点等是较好的图像特征
特征检测:找到图像中的特征文章来源:https://www.toymoban.com/news/detail-694420.html
特征描述:对特征及其周围的区域进行描述文章来源地址https://www.toymoban.com/news/detail-694420.html
到了这里,关于Lesson4-1:OpenCV图像特征提取与描述---角点特征的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!