Middleware ❀ Kafka功能与使用详解

这篇具有很好参考价值的文章主要介绍了Middleware ❀ Kafka功能与使用详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 概述

Kafka是Apache基金会开发的一个开源流处理平台,由Scala和Java编写,Kafka是一个开源的分布式事件流平台,主要应用于大数据实时处理领域。

1.1. 消息队列

目前企业中常见的消息队列产品主要有RabbitMQ、ActivceMQ、RocketMQ、Kafka等。在大数据场景下主要采用Kafka作为消息队列,在JavaEE开发中主要采用RabbitMQ、ActivceMQ、RocketMQ作为消息队列进行使用。

1.2. 应用场景

传统消息队列的主要应用场景有:缓存/消峰、解耦合、异步通信。

  • 缓存/消峰:有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致情况。

  • 解耦合:允许独立的扩展或修改两边处理过程,只考虑遵守Kafka接口约束规则即可。

  • 异步通信:允许用户将消息放入队列,并不需要立即处理消息,等待需要时进行处理即可。

1.3. 工作模式

  • 点对点模式:消费者主动拉取数据,消息收到后清除队列中消息;

  • 发布/订阅模式:存在多个topic主题,消费者消费数据后不做删除操作,每个消费者相互独立,都可以消费到所需消息。

1.4. 基础结构

Middleware ❀ Kafka功能与使用详解,Middleware,kafka,分布式

1.4.1. 结构组件

  • Broker:Kafka服务实例或服务节点,多个Broker构成了Kafka Cluster;
  • Producer:生产者,写入消息的角色,将消息写入Broker的Topic Partition Leader副本内;
  • Consumer:消费者,读取消息的角色,从Broker的Topic Partition Leader读取生产者写入的消息;
  • Consumer Group:消费者组,一个或多个消费者构成一个消费组,不同的消费组可以订阅同一个主题的消息且互不影响;
  • ZooKeeper:Kafka Cluster使用ZK来管理集群的Broker、Topic、Partition等元数据,以及控制器的选举;
  • Topic:消息主题(逻辑概念),每一个消息都属于某个主题,Kafka通过主题来区分不同的消息;
  • Partition:分区,一个Topic可以划分多个分区,一个分区只属于一个主题;
  • Replica:副本,一个分区可以拥有多个副本来提高数据可靠性;
  • Leader & Follower:分区角色,当某个Topic划分为多个分区时,单个分区拥有多个副本,这些副本需要进行消息同步保证数据一致性,主副本提供读写能力,从副本不提供读写,仅仅作为主副本的备份及时同步数据即可;
  • Offset:偏移量(类比TCP协议分段),分区中的每一条消息都有一个所在分区的偏移量,这个偏移量唯一标识了该消息在当前这个分区的位置,并保证在这个分区的顺序性,不可保证跨分区的顺序性。

1.4.2. 数据同步

以一次数据生产者发送消息的流程进行介绍数据复制过程。
Middleware ❀ Kafka功能与使用详解,Middleware,kafka,分布式

流程如下:

  • 生产者Producer向Kafka cluster集群中Broker的Topic Partition Leader发送消息请求,写入消息;
  • Topic Partition Leader收到后,存储完成,并将消息同步到其他Topic Partition Follower;
  • Follower同步并存储完成后返回ACK至Leader处,当Leader收集到所有Follower的存储确认后,向Producer返回消息写入完成ACK;
  • 消费者Consumer此时就可以向Topic Partition Leader发送消费请求,消费存储好的数据。

1.4.3. ACK机制

在前述流程中Kafka Cluster的ACK响应机制分为三种:

  • ack=0:生产者Producer向Partition Leader发送消息请求后立即返回ACK,此时消息有可能还未落盘;写入消息吞吐量最高,但数据可靠性最低;

  • ack=1:生产者Producer向Partition Leader发送消息请求后等待Leader写入成功后返回ACK,此时只有Leader分区存储完成,Follower未存储消息;写入消息吞吐量偏高,但消息还未同步给Follower,若Leader异常则会发生数据丢失问题,因此数据可靠性偏低;

  • ack=-1:生产者Producer向Partition Leader发送消息请求后,等待Leader和ISR中的Follower都存储完成后返回ACK;写入消息吞吐量较前两种类型更低,但数据可靠性最高,极端情况也会存在数据丢失的风险(当ISR中的Follower均异常时,此时ack=-1系效果等于ack=1,因此数据可靠性最高的场景为:ack=-1 + ISR follower num >= 2)。

1.4.4. 分区机制

Kafka中Topic被分成多个Partition分区,Topic是一个逻辑概念,而Partition是最小存储单元,每个Partition都是一个单独的log文件,每条消息都会以追加的形式写入到此log文件内,因此Producer或Consumer都可以进行并发请求,显著提升I/O性能。

Middleware ❀ Kafka功能与使用详解,Middleware,kafka,分布式

1.4.4.1. 使用Partition Key写入

Producer发送消息时,可以指定Partition Key(任意值,如UserID),将Key传递到HASH函数,再与该Topic的Partition总数进行取余可得到分区号,此消息因此写入所得编号的Partition内。

  • 优点:使用此方法得到的分区编号可以使得相同UserID的消息存储在同一个分区内;
  • 缺点:如果该UserID产生的消息特别多,那么此分区会异常繁忙,发生数据倾斜问题。
1.4.4.2. 轮询写入 - 默认规则

如果没有使用Partition Key,Kafka默认使用轮询的方式来决定写入哪个Partition,因此消息会均衡的写入各个Partition。

1.4.4.3. 指定Partition写入

Kafka 支持自定义规则,一个Producer可以使用自己的分区指定规则。

1.4.5. Offset偏移量

Topic Partition中的每条记录都会被分配一个唯一的序号,称为Offset(偏移量)。Offset是一个递增的、不可变的数字,由Kafka自动维护。当一条记录写入Partition的时候,它就被追加到log文件的末尾,并被分配一个序号,作为Offset。在消息消费的时候对于一个消费组来说,在一个分区上也会设置一个Offset(消费组的Offset)。

Middleware ❀ Kafka功能与使用详解,Middleware,kafka,分布式

1.4.5.1. 消息顺序性

一个Topic如果有多个Partition的话,那么从Topic来看消息是无序的,而从Partition来看内部消息有序,跨Partition无序,因此若需要Topic得消息有序,则需要配置该Topic为单个Partition即可。

1.4.5.2. Coordinator协调者

Offset偏移量如何进行存储?一个集群上可能有成百上千个消费组,如何进行分配?

实际上Kafka创建一个内部Topic用来存储Offset偏移量信息,名称为**__consumer_offsets**,这时某个消费组如何找到自己被那个Broker代理?

服务端会通过消费组的HASH对__consumer_offsets的分区数(offsets.topic.num.partitions默认是50,offsets.topic.replication.factor默认为1)进行取模操作,其取值即为Partition编号,这样就拿到了这个消费组的Offset是存在于那个Partition上,然后获取__consumer_offsets topic的该编号Partition的元数据信息,其中Leader就是这个消费组的代理节点即Coordinator(协调者)。

[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --describe --topic __consumer_offsets
Topic: __consumer_offsets       TopicId: B2x90fF5TDOzlyvKQcqGNA PartitionCount: 50      ReplicationFactor: 1    Configs: compression.type=producer,cleanup.policy=compact,segment.bytes=104857600
        Topic: __consumer_offsets       Partition: 0    Leader: 2       Replicas: 2     Isr: 2
        ~ 
        # 以下内容省略

在一个消费节点启动之后会先从服务端获取该消费组的Coordinator,即发起Findcoordinator请求,然后获取本消费节点处理的分区当前消费的Offset位置,即发起OffsetFetch请求。才可以知道从各个分区应该从哪个位置开始拉取消息数据。

1.4.5. ConsumerGroup消费者组

  • ConsumerGroup下可以有一个或多个Consumer,Consumer可以是一个进程,也可以是一个线程;
  • Group.id是一个字符串,唯一标识一个ConsumerGroup;
  • ConsumerGroup下订阅的Topic下的每个分区只能分配给某个Group下的一个Consumer(当然该分区还可以被分配给其他Group)。

1.4.6. Rebalance机制

Kafka集群模式下,一个Topic有多个Partition,对于消费方来说可以有多个Consumer同时消费这些Partition,为保证Partition和Consumer的均衡性,提升Topic的并发能力,Rebalance规定了一个ConsumerGroup下的所有Consumer如何分配订阅Topic的每个Partition。

Rebalance机制场景:

  • ConsumerGroup组内成员数量发生变化;
  • Consumer消费超时;
  • Group订阅Topic数量发生变化;
  • Group订阅Topic下Partition数量发生变化。

1.4.7. 数据一致性

从Producer向Broker发送消息、Topic Partition与Replicas及其Leader选举几个角度介绍数据传输可靠性。

  • AR:Assigned Replicas,所有的副本;
  • ISR:In-Sync Replicas,所有和主副本保持同步的副本集合(Follower在replica.lag.time.max.ms时间范围内同步到Leader的LEO位置即可);
  • OSR:Out-of-Sync Replicas,所有和主副本未保持一致的副本集合;

AR = ISR + OSR

  • LEO:Log End Offset,下一个消息将要写入的Offset偏移位置,在LEO之前的消息都已完成写入日志,每个副本都有一个自己的LEO位置;
  • HW:High Watermark,所有与主副本保持同步的副本中,最小的LEO就是HW,意味着在这之前的消息都已经被所有的ISR副本写入到日志中,即使主副本异常后其中一个ISR副本成为主副本时消息也不会发生丢失问题。
1.4.7.1. Replicas副本机制

Kafka从0.8.0版本引入副本机制,每个Partition可以自定义设置副本数量(默认配置数量为3),多个副本中有一个为Leader,其余为Follower,Follower定期向Leader请求数据同步,当Leader异常时可以重新选举出新的Leader,提高Kafka的数据冗余。

Replicas副本机制为Partition分区的机制,并非Topic主题!

1.4.7.2. Leader选举

每个Partition的Leader都会维护一个ISR列表(Follower副本的Broker编号),只有与Leader同步完成的副本Follower才能加入到ISR列表中,由参数replica.lag.time.max.ms控制(默认10s),只有在ISR列表内的Follower才可以成为Leader(默认配置unclean.leader.election.enable=false,不能从非ISR的副本列表里选择Leader)。因此当Leader异常后,会从ISR列表中选择第一个Follower作为新Leader,以此保证Kafka的消息数据可靠性。

1.4.7.3. 可靠性保证
  • ACK机制:acks=all(或request.required.acks=-1),同时producer.type=sync
  • 副本数量:设置replication.factor>=3,并且 min.insync.replicas>=2;
  • 分区副本选举:关闭不完全的Leader 选举(unclean.leader.election.enable=false)且保持offsets.topic.replication.factor > 1;

1.5 ZK目录结构

Middleware ❀ Kafka功能与使用详解,Middleware,kafka,分布式

[root@master ~]# vim /kafka_cluster/kafka-1/config/server.properties
# 测试场景中配置ZK连接位置如下,则ZK中存储的Kafka元数据均位于/kafka路径下
zookeeper.connect=localhost:2181/kafka

1.5.1. /brokers

当一个Broker启动时,会向ZK注册自己持有的Topic和Partitions信息。

> ls /kafka/brokers
[ids, seqid, topics]
1.5.1.1. /brokers/ids

每个Broker的配置文件中都需要指定一个数字类型的id(全局不可重复),此节点为临时 Znode(EPHEMERAL)。

> ls /kafka/brokers/ids 
[0, 1, 2]
> get -s /kafka/brokers/ids/0
{
  "listener_security_protocol_map": {
    "PLAINTEXT": "PLAINTEXT"			# 明文显示
  },
  "endpoints": [
    "PLAINTEXT://master:9092"
  ],
  "jmx_port": -1,									# jmx端口号
  "features": {},
  "host": "master",								# 主机名或ip地址
  "timestamp": "1691651715646",		# broker初始启动时的时间戳
  "port": 9092,										# broker的服务端端口号,由server.properties中参数port确定
  "version": 5										# 版本编号默认为1,递增
}
cZxid = 0x300000071
ctime = Thu Aug 10 15:15:15 CST 2023
mZxid = 0x300000071
mtime = Thu Aug 10 15:15:15 CST 2023
pZxid = 0x300000071
cversion = 0
dataVersion = 1
aclVersion = 0
ephemeralOwner = 0x100233882bf0008	# 临时节点标识
dataLength = 196
numChildren = 0
1.5.1.2. /brokers/topics

包含各Topic的Partition状态信息,此节点为临时Znode(EPHEMERAL)。

> ls /kafka/brokers/topics 
[__consumer_offsets, hello_test]
> ls /kafka/brokers/topics/hello_test
[partitions]
> get -s /kafka/brokers/topics/hello_test
{
  "removing_replicas": {},
  "partitions":{"1":[0,2],"0":[1,0]},			# 同步副本组BrokerId列表(ISR)
  "topic_id": "hQ7vPPgRQF2XEwhRSxO7nA",
  "adding_replicas": {},
  "version": 3
}
cZxid = 0x200000077
ctime = Tue Aug 08 17:45:47 CST 2023
mZxid = 0x200000077
mtime = Tue Aug 08 17:45:47 CST 2023
pZxid = 0x200000078
cversion = 1
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 128
numChildren = 1

> ls /kafka/brokers/topics/hello_test/partitions
[0, 1]
> ls /kafka/brokers/topics/hello_test/partitions/0 
[state]
> get -s /kafka/brokers/topics/hello_test/partitions/0/state 
{
  "controller_epoch": 3,						# Kafka集群中的中央控制器选举次数
  "leader": 1,											# 该Partition选举Leader的BrokerId
  "version": 1,											# 版本编号默认为1
  "leader_epoch": 3,								# 该Partition Leader选举次数
  "isr": [0,1]											# ISR列表
}
cZxid = 0x20000007c
ctime = Tue Aug 08 17:45:47 CST 2023
mZxid = 0x30000007b
mtime = Thu Aug 10 15:15:21 CST 2023
pZxid = 0x20000007c
cversion = 0
dataVersion = 4
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 74
numChildren = 0

1.5.2. /consumers

每个Consumer都有唯一的id,用来标记消费者信息,该目录下仅展示使用ZK进行消费的 Consumers,如果之间指定Kafka节点进行消费,不会在此展示。

> ls /consumers
[console-consumer-84155, console-consumer-32194, wolves_report, console-consumer-9761, wolves_v2_gdt, console-consumer-63530, wolves, wolves_feedback, wolves_kuaishou, console-consumer-62629, ftrl1, console-consumer-56068, wolves_tuia]
> ls /consumers/wolves_report
[ids, owners, offsets]

注意事项:

使用kafka-console-consumer.sh命令创建的消费者并不会在Zookeeper的/consumers路径下创建消费者组信息,因为该命令使用的是新的消费者API,它使用了Kafka集群的元数据来管理消费者组信息,而不是使用Zookeeper。
新的消费者API不再需要将消费者组信息写入到Zookeeper中,因为Kafka集群本身就足够强大,可以自己管理消费者组信息。因此,使用kafka-console-consumer.sh创建的消费者不会在Zookeeper的/consumers路径下创建消费者组信息,而是在Kafka集群的元数据中进行管理。

Kafka的最新版本已经逐步淘汰了使用Zookeeper作为消费者元数据存储的方式,而是采用内部存储来管理消费者组信息。因此,新版本的Kafka已经不再支持使用--zookeeper参数来指定Zookeeper的连接信息。

如果你想要创建一个在Zookeeper的/consumers路径下的消费者,你需要使用旧的消费者API,而不是使用kafka-console-consumer.sh命令所使用的新的消费者API。

因此以下配置均来自旧版本Kafka。

1.5.2.1. /consumers/{groupId}/ids
> ls /consumers/wolves_report/ids
[wolves_report_node1.tc.wolves.dmp.com-1536837975646-39504764, wolves_report_node1.tc.wolves.dmp.com-1536838003051-182cc752,...]

> get /consumers/wolves_report/ids/wolves_report_node1.tc.wolves.dmp.com-1536837975646-39504764						 # 旧版本下ZK命令get效果等于新版本ZK命令get -s
{
 "version":1,   									# 版本编号默认为1
   "subscription": 								# 订阅的Topic列表
      {
            "wolves-event":3      # Consumer中Topic消费者线程数
     },
   "pattern":"static",						# 模式
  "timestamp":"1537128878487"  		# Consumer启动时的时间戳
}
cZxid = 0x717782b21
ctime = Mon Sep 17 04:14:38 CST 2022
mZxid = 0x717782b21
mtime = Mon Sep 17 04:14:38 CST 2022
pZxid = 0x717782b21
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x36324802b64ea62
dataLength = 94
numChildren = 0
1.5.2.2. /consumers/{groupId}/owner
> ls /consumers/wolves_report/owners
[wolves-event]   # topic

> ls /consumers/wolves_report/owners/wolves-event
[0, 1, 2]       # partitionId

> get /consumers/wolves_report/owners/wolves-event/0
wolves_report_node1.tc.wolves.dmp.com-1536837527210-1310d8f9-0
cZxid = 0x717782ba9
ctime = Mon Sep 17 04:14:40 CST 2022
mZxid = 0x717782ba9
mtime = Mon Sep 17 04:14:40 CST 2022
pZxid = 0x717782ba9
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x26324802b69ea62
dataLength = 62
numChildren = 0
1.5.2.3. /consumers/{groupId}/offset
> ls /consumers/wolves_report/offsets
[wolves-event]    # topic

> ls /consumers/wolves_report/offsets/wolves-event
[0, 1, 2]     		# partitionId

> get /consumers/wolves_report/offsets/wolves-event/0
48800
cZxid = 0x200e97e36
ctime = Thu Nov 23 17:22:10 CST 2022
mZxid = 0x718665858
mtime = Fri Sep 21 12:02:39 CST 2022
pZxid = 0x200e97e36
cversion = 0
dataVersion = 11910567
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 5
numChildren = 0

1.5.3. /admin

1.5.3.1. /admin/reassign_partitions

用以Partitions重分区,Reassign结束后会删除该目录。

> ls /admin/reassign_partitions
[]
1.5.3.2. /admin/preferred_replica_election

用以Partitions各副本Leader选举,副本选举结束后会删除该目录。

> ls /admin/reassign_partitions
[]
1.5.3.3. /admin/delete_topics

管理已删除的Topics,Broker启动时检查并确保存在。

> ls /admin/delete_topics
[]

1.5.4. /controller

存储Center controller中央控制器所在Kafka broker的信息。

> get -s /kafka/controller
{
  "version": 2,										# 版本编号默认为1
  "brokerid": 1,									# BrokerID
  "timestamp": "1691722592052",		# Broker中央控制器变更时的时间戳
  "kraftControllerEpoch": -1
}
cZxid = 0x4000000de
ctime = Fri Aug 11 10:56:32 CST 2023
mZxid = 0x4000000de
mtime = Fri Aug 11 10:56:32 CST 2023
pZxid = 0x4000000de
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x10000042fff0009
dataLength = 80
numChildren = 0

1.5.5. /controller_epoch

Kafka集群中第一个Broker第一次启动时该值为1,后续只要集群中Center Controller中央控制器所在Broker变更或挂掉,就会重新选举新的Center Controller,每次Center Controller变更controller_epoch值就会自增1。

> get -s /kafka/controller_epoch
6
cZxid = 0x10000003f
ctime = Tue Aug 08 16:24:00 CST 2023
mZxid = 0x4000000de
mtime = Fri Aug 11 10:56:32 CST 2023
pZxid = 0x10000003f
cversion = 0
dataVersion = 6
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 1
numChildren = 0

2、服务安装

官网下载安装包:https://kafka.apache.org/,根据需求下载对应版本即可,本文以最新版本为例做部署操作说明。

Middleware ❀ Kafka功能与使用详解,Middleware,kafka,分布式

2.1. 单机部署

# 解压安装包并创建软链接
[root@master ~]# tar -xvf kafka_2.12-3.3.1.tgz -C /middleware/
[root@master ~]# cd /middleware/
[root@master middleware]# ln -s kafka_2.12-3.3.1/ kafka
[root@master middleware]# cd kafka
[root@master kafka]# ll
total 64
drwxr-xr-x 3 root root  4096 Sep 30 03:05 bin								# 可执行文件
drwxr-xr-x 3 root root  4096 Sep 30 03:05 config							# 配置文件
drwxr-xr-x 2 root root  4096 Nov 11 16:49 libs
-rw-rw-r-- 1 root root 14842 Sep 30 03:03 LICENSE
drwxr-xr-x 2 root root  4096 Sep 30 03:05 licenses
-rw-rw-r-- 1 root root 28184 Sep 30 03:03 NOTICE
drwxr-xr-x 2 root root  4096 Sep 30 03:05 site-docs
[root@master kafka]# cd config/
[root@master config]# ll
total 72
-rw-r--r-- 1 root root  906 Mar  3  2020 connect-console-sink.properties
-rw-r--r-- 1 root root  909 Mar  3  2020 connect-console-source.properties
-rw-r--r-- 1 root root 5321 Mar  3  2020 connect-distributed.properties
-rw-r--r-- 1 root root  883 Mar  3  2020 connect-file-sink.properties
-rw-r--r-- 1 root root  881 Mar  3  2020 connect-file-source.properties
-rw-r--r-- 1 root root 2247 Mar  3  2020 connect-log4j.properties
-rw-r--r-- 1 root root 1539 Mar  3  2020 connect-mirror-maker.properties
-rw-r--r-- 1 root root 2262 Mar  3  2020 connect-standalone.properties
-rw-r--r-- 1 root root 1221 Mar  3  2020 consumer.properties
-rw-r--r-- 1 root root 4675 Mar  3  2020 log4j.properties
-rw-r--r-- 1 root root 1925 Mar  3  2020 producer.properties
-rw-r--r-- 1 root root 6848 Mar  3  2020 server.properties					# 服务属性
-rw-r--r-- 1 root root 1032 Mar  3  2020 tools-log4j.properties
-rw-r--r-- 1 root root 1169 Mar  3  2020 trogdor.conf
-rw-r--r-- 1 root root 1205 Mar  3  2020 zookeeper.properties

# 修改服务配置
[root@master kafka]# cd config/
[root@master kafka]# vim server.properties
 24 broker.id=0																# 指定broker id,集群内保持有且唯一
 34 listeners=PLAINTEXT://node1:9092										# 服务监听端口,默认9092
 62 log.dirs=/middleware/kafka/data											# 日志存放路径
 67 num.partitions=1														# 分区数量,默认为1
 125 zookeeper.connect=master:2181,node1:2181,node2:2181/kafka				# ZK集群配置
 # ZK携带路径原因:携带路径之后kafka信息将保存在ZK中/kafka路径下,后续使用--zokeeper连接时就需要携带此路径,否则无法寻找相关数据

[root@master kafka]# cd ../bin/
[root@master bin]# ll
total 140
-rwxr-xr-x 1 root root 1421 Mar  3  2020 connect-distributed.sh
-rwxr-xr-x 1 root root 1394 Mar  3  2020 connect-mirror-maker.sh
-rwxr-xr-x 1 root root 1418 Mar  3  2020 connect-standalone.sh
-rwxr-xr-x 1 root root  861 Mar  3  2020 kafka-acls.sh
-rwxr-xr-x 1 root root  873 Mar  3  2020 kafka-broker-api-versions.sh
-rwxr-xr-x 1 root root  864 Mar  3  2020 kafka-configs.sh
-rwxr-xr-x 1 root root  945 Mar  3  2020 kafka-console-consumer.sh			# consumer操作
-rwxr-xr-x 1 root root  944 Mar  3  2020 kafka-console-producer.sh			# producer操作
-rwxr-xr-x 1 root root  871 Mar  3  2020 kafka-consumer-groups.sh			# consumer groups操作
-rwxr-xr-x 1 root root  948 Mar  3  2020 kafka-consumer-perf-test.sh
-rwxr-xr-x 1 root root  871 Mar  3  2020 kafka-delegation-tokens.sh
-rwxr-xr-x 1 root root  869 Mar  3  2020 kafka-delete-records.sh
-rwxr-xr-x 1 root root  866 Mar  3  2020 kafka-dump-log.sh
-rwxr-xr-x 1 root root  870 Mar  3  2020 kafka-leader-election.sh
-rwxr-xr-x 1 root root  863 Mar  3  2020 kafka-log-dirs.sh
-rwxr-xr-x 1 root root  862 Mar  3  2020 kafka-mirror-maker.sh
-rwxr-xr-x 1 root root  886 Mar  3  2020 kafka-preferred-replica-election.sh
-rwxr-xr-x 1 root root  959 Mar  3  2020 kafka-producer-perf-test.sh
-rwxr-xr-x 1 root root  874 Mar  3  2020 kafka-reassign-partitions.sh
-rwxr-xr-x 1 root root  874 Mar  3  2020 kafka-replica-verification.sh
-rwxr-xr-x 1 root root 9633 Mar  3  2020 kafka-run-class.sh
-rwxr-xr-x 1 root root 1376 Mar  3  2020 kafka-server-start.sh				# 开启服务
-rwxr-xr-x 1 root root  997 Mar  3  2020 kafka-server-stop.sh				# 关闭服务
-rwxr-xr-x 1 root root  945 Mar  3  2020 kafka-streams-application-reset.sh
-rwxr-xr-x 1 root root  863 Mar  3  2020 kafka-topics.sh					# topic操作
-rwxr-xr-x 1 root root  958 Mar  3  2020 kafka-verifiable-consumer.sh
-rwxr-xr-x 1 root root  958 Mar  3  2020 kafka-verifiable-producer.sh
-rwxr-xr-x 1 root root 1722 Mar  3  2020 trogdor.sh
drwxr-xr-x 2 root root 4096 Mar  3  2020 windows
-rwxr-xr-x 1 root root  867 Mar  3  2020 zookeeper-security-migration.sh
-rwxr-xr-x 1 root root 1393 Mar  3  2020 zookeeper-server-start.sh
-rwxr-xr-x 1 root root 1001 Mar  3  2020 zookeeper-server-stop.sh
-rwxr-xr-x 1 root root  968 Mar  3  2020 zookeeper-shell.sh

# 确认ZK服务正常启动
[root@master kafka]# sh /middleware/zookeeper/bin/zkCluster.sh start
[root@master kafka]# jps
6720 Jps
6301 QuorumPeerMain

# 开启Kafka服务
[root@master kafka]# ./bin/kafka-server-start.sh 
USAGE: ./bin/kafka-server-start.sh [-daemon] server.properties [--override property=value]*
[root@master kafka]# ./bin/kafka-server-start.sh -daemon ./config/server.properties

# 确认Kafka服务正常启动
[root@master kafka]# jps
7202 Jps
7084 Kafka
6301 QuorumPeerMain

2.2. 伪集群部署

# master配置
[root@master kafka_cluster]# cat kafka-1/config/server.properties | grep -Ev "^$|^#"
broker.id=0
listeners=PLAINTEXT://:9092
num.network.threads=3
num.io.threads=8
socket.send.buffer.bytes=102400
socket.receive.buffer.bytes=102400
socket.request.max.bytes=104857600
log.dirs=/kafka_cluster/kafka-1/kafka-logs
num.partitions=1
num.recovery.threads.per.data.dir=1
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
log.retention.hours=168
log.retention.check.interval.ms=300000
zookeeper.connect=localhost:2181/kafka
zookeeper.connection.timeout.ms=18000
group.initial.rebalance.delay.ms=0

# node1配置
[root@master kafka_cluster]# cat kafka-2/config/server.properties | grep -Ev "^$|^#"
broker.id=1
listeners=PLAINTEXT://:9093
num.network.threads=3
num.io.threads=8
socket.send.buffer.bytes=102400
socket.receive.buffer.bytes=102400
socket.request.max.bytes=104857600
log.dirs=/kafka_cluster/kafka-2/kafka-logs
num.partitions=1
num.recovery.threads.per.data.dir=1
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
log.retention.hours=168
log.retention.check.interval.ms=300000
zookeeper.connect=localhost:2181/kafka
zookeeper.connection.timeout.ms=18000
group.initial.rebalance.delay.ms=0

# node2配置
[root@master kafka_cluster]# cat kafka-3/config/server.properties | grep -Ev "^$|^#"
broker.id=2
listeners=PLAINTEXT://:9094
num.network.threads=3
num.io.threads=8
socket.send.buffer.bytes=102400
socket.receive.buffer.bytes=102400
socket.request.max.bytes=104857600
log.dirs=/kafka_cluster/kafka-3/kafka-logs
num.partitions=1
num.recovery.threads.per.data.dir=1
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
log.retention.hours=168
log.retention.check.interval.ms=300000
zookeeper.connect=localhost:2181/kafka
zookeeper.connection.timeout.ms=18000
group.initial.rebalance.delay.ms=0

# 分别在kafka-1、kafka-2、kafka-3目录下开启服务
[root@master kafka_cluster]# ./kafka-1/bin/kafka-server-start.sh 
USAGE: ./bin/kafka-server-start.sh [-daemon] server.properties [--override property=value]*
[root@master kafka]# ./bin/kafka-server-start.sh -daemon ./config/server.properties

2.3. 集群操控脚本

[root@master kafka_cluster]# cat cluster.sh 
#!/bin/bash

node_list=`ls -l /kafka_cluster/ | awk '{print$9}' | grep kafka-`

case ${1:-help} in
"start")
        for i in ${node_list[@]}
        do
                su redhat -c "sh /kafka_cluster/$i/bin/kafka-server-start.sh -daemon /kafka_cluster/$i/config/server.properties"
                echo -e "\033[32m$i Kafka service is STARTED!\033[0m"
        done
        ;;
"stop")
        for i in ${node_list[@]}
        do
                su redhat -c "sh /kafka_cluster/$i/bin/kafka-server-stop.sh"
                echo -e "\033[31m$i Kafka service is STOPPED!\033[0m"
        done
        ;;
*)
        echo -e "\033[31mInput ERROR,Please input \"start/stop!\"\033[0m"
        ;;
esac

# 集群操作脚本使用测试
[root@master kafka_cluster]# chmod 755 cluster.sh
[root@master kafka_cluster]# ln -s /zk_cluster/cluster.sh zk_cluster.sh start
[root@master kafka_cluster]# ./zk_cluster.sh start
# 开启
[root@master kafka_cluster]# ./cluster.sh start
kafka-1 Kafka service is STARTED!
kafka-2 Kafka service is STARTED!
kafka-3 Kafka service is STARTED!

# 关闭(先关闭Kafka,等进程全部退出后方可关闭ZK服务,否则Kafka将一直存在,直到被kill -9杀死进程)
[root@master kafka_cluster]# ./cluster.sh stop
kafka-1 Kafka service is STOPPED!
kafka-2 Kafka service is STOPPED!
kafka-3 Kafka service is STOPPED!

# 进程验证
[root@master kafka_cluster]# jps
1459988 Kafka
1459253 Kafka
1460099 Jps
1453443 QuorumPeerMain
1459617 Kafka
1453374 QuorumPeerMain
1453529 QuorumPeerMain

# 一键修改集群环境变量
[root@master kafka_cluster]# sed -i '$a # Kafka' /etc/profile && sed -i '$a export KAFKA_HOME=/kafka_cluster/kafka-1' /etc/profile && sed -i '$a export PATH=$KAFKA_HOME/bin/:$PATH' /etc/profile && source /etc/profile

2.5. 客户端命令行操作

Kafka可执行目录下存在多个脚本控制文件,常用的有topic、producer、consumer、consumer group四种,其他仅做了解即可。

[root@master kafka_cluster]# cd kafka-1/bin/
[root@master bin]# ll
total 172
-rwxr-xr-x 1 redhat redhat  1423 Jun  5 17:03 connect-distributed.sh
-rwxr-xr-x 1 redhat redhat  1396 Jun  5 17:03 connect-mirror-maker.sh
-rwxr-xr-x 1 redhat redhat  1420 Jun  5 17:03 connect-standalone.sh
-rwxr-xr-x 1 redhat redhat   861 Jun  5 17:03 kafka-acls.sh
-rwxr-xr-x 1 redhat redhat   873 Jun  5 17:03 kafka-broker-api-versions.sh				# 用于验证不同版本的Broker和Consumer之间的适配行
-rwxr-xr-x 1 redhat redhat   871 Jun  5 17:03 kafka-cluster.sh
-rwxr-xr-x 1 redhat redhat   864 Jun  5 17:03 kafka-configs.sh													# 修改配置,支持操作主题、broker、用户和客户端这3个类型的配置
-rwxr-xr-x 1 redhat redhat   945 Jun  5 17:03 kafka-console-consumer.sh					# 通过控制台订阅并接收消息
-rwxr-xr-x 1 redhat redhat   944 Jun  5 17:03 kafka-console-producer.sh					# 通过控制台发送消息
-rwxr-xr-x 1 redhat redhat   871 Jun  5 17:03 kafka-consumer-groups.sh					# kafka消费者组控制,支持查看与设置offset等操作
-rwxr-xr-x 1 redhat redhat   959 Jun  5 17:03 kafka-consumer-perf-test.sh				# 用于对消费消息的性能做测试
-rwxr-xr-x 1 redhat redhat   882 Jun  5 17:03 kafka-delegation-tokens.sh
-rwxr-xr-x 1 redhat redhat   869 Jun  5 17:03 kafka-delete-records.sh
-rwxr-xr-x 1 redhat redhat   866 Jun  5 17:03 kafka-dump-log.sh							# 用来查看消息文件的数据,--file参数为将数据读取到一个文件中,包含了消息集合位移范围、数量、创建时间、压缩算法等信息,如果想看每一条的具体信息,可以通过在命令之后添--deep-iteration参数
-rwxr-xr-x 1 redhat redhat   877 Jun  5 17:03 kafka-e2e-latency.sh
-rwxr-xr-x 1 redhat redhat   863 Jun  5 17:03 kafka-features.sh
-rwxr-xr-x 1 redhat redhat   865 Jun  5 17:03 kafka-get-offsets.sh						# 查看当前某个topic的offset位置
-rwxr-xr-x 1 redhat redhat   867 Jun  5 17:03 kafka-jmx.sh															# 修改JMX
-rwxr-xr-x 1 redhat redhat   870 Jun  5 17:03 kafka-leader-election.sh					# Leader分区重新选举
-rwxr-xr-x 1 redhat redhat   863 Jun  5 17:03 kafka-log-dirs.sh
-rwxr-xr-x 1 redhat redhat   881 Jun  5 17:03 kafka-metadata-quorum.sh
-rwxr-xr-x 1 redhat redhat   873 Jun  5 17:03 kafka-metadata-shell.sh
-rwxr-xr-x 1 redhat redhat   862 Jun  5 17:03 kafka-mirror-maker.sh
-rwxr-xr-x 1 redhat redhat   959 Jun  5 17:03 kafka-producer-perf-test.sh				# 用于对生产消息的性能做测试
-rwxr-xr-x 1 redhat redhat   874 Jun  5 17:03 kafka-reassign-partitions.sh				# 分区重分配工具
-rwxr-xr-x 1 redhat redhat   874 Jun  5 17:03 kafka-replica-verification.sh
-rwxr-xr-x 1 redhat redhat 10884 Jun  5 17:03 kafka-run-class.sh
-rwxr-xr-x 1 redhat redhat  1376 Jun  5 17:03 kafka-server-start.sh						# 启动Kafka服务
-rwxr-xr-x 1 redhat redhat  1361 Jun  5 17:03 kafka-server-stop.sh						# 停止Kafka服务
-rwxr-xr-x 1 redhat redhat   860 Jun  5 17:03 kafka-storage.sh
-rwxr-xr-x 1 redhat redhat   956 Jun  5 17:03 kafka-streams-application-reset.sh
-rwxr-xr-x 1 redhat redhat   863 Jun  5 17:03 kafka-topics.sh							# 主题管理工具,创建、查看、修改和删除等操作
-rwxr-xr-x 1 redhat redhat   879 Jun  5 17:03 kafka-transactions.sh
-rwxr-xr-x 1 redhat redhat   958 Jun  5 17:03 kafka-verifiable-consumer.sh
-rwxr-xr-x 1 redhat redhat   958 Jun  5 17:03 kafka-verifiable-producer.sh
-rwxr-xr-x 1 redhat redhat  1714 Jun  5 17:03 trogdor.sh
drwxr-xr-x 2 redhat redhat  4096 Jun  5 17:03 windows
-rwxr-xr-x 1 redhat redhat   867 Jun  5 17:03 zookeeper-security-migration.sh
-rwxr-xr-x 1 redhat redhat  1393 Jun  5 17:03 zookeeper-server-start.sh					# kafka自带zk的服务控制工具
-rwxr-xr-x 1 redhat redhat  1366 Jun  5 17:03 zookeeper-server-stop.sh
-rwxr-xr-x 1 redhat redhat  1019 Jun  5 17:03 zookeeper-shell.sh

2.5.1. Topic

获取参数帮助信息方法:

[root@master bin]# sh kafka-topics.sh --help

常见参数说明:

  • –bootstrap-server <String: server to connect to>:连接Kafka Broker主机名称和端口(高版本);
  • –zookeeper <String: hosts>:连接ZK服务和端口(低版本);
  • –topic <String: topic> :操作的Topic名称;
  • –create:创建;
  • –delete:删除;
  • –alter:修改;
  • –list:列表查看;
  • –describe:查看详细信息;
  • –partitions <Integer: # of partitions>:设置分区数(分区数目客户端命令行操作只能增加不能减少);
  • –replication-factor <Integer replication factor>:设置副本数;
  • –config <String: name=value>:修改服务配置。

2.5.2. Producer

获取参数帮助信息方法:

[root@master bin]# sh kafka-console-producer.sh --help

常见参数说明:

  • –bootstrap-server <String: server to connect to>:连接Kafka Broker主机名称和端口(高版本);
  • –bootstrap-server <String: server toconnect to>:连接Kafka Broker主机名称和端口(低版本);
  • –producer.config <String: config file>:生产者配置文件关联;
  • –zookeeper <String: hosts>:连接ZK服务和端口(低版本);
  • –topic <String: topic> :操作的Topic名称;

2.5.3. Consumer

获取参数帮助信息方法:

[root@master bin]# sh kafka-console-consumer.sh --help

常见参数说明:

  • –bootstrap-server <String: server to connect to>:连接Kafka Broker主机名称和端口(高版本);
  • –zookeeper <String: hosts>:连接ZK服务和端口(低版本);
  • –consumer.config <String: config file>:消费者配置文件关联;
  • –topic <String: topic> :操作的Topic名称;
  • –from-beginning:消费历史信息;
  • –whitelist <String: Java regex(String)>:白名单;
  • –partition <Integer: partition>:指定分区;
  • –offset <String: consume offset>:指定offset(最新为latest);
  • –max-messages <Integer: num_messages>:最大消费数量;

2.5.4. Consumer group

获取参数帮助信息方法:

[root@master bin]# sh kafka-consumer-groups.sh --help

常见参数说明:

  • –bootstrap-server <String: server to connect to>:连接Kafka Broker主机名称和端口;
  • –delete:删除消费者组;
  • –delete-offsets:删除到指定offset;
  • –describe:查看详细信息;
  • –execute:立刻执行;
  • –group <String: consumer group>:指定组名;
  • –list:列表查看;
  • –offsets:指定offset(最新为latest);
  • –reset-offsets:重置offset到某个时刻;
  • –to-datetime <String: datetime>:恢复到指定时间的offset,时间格式:YYYY-MM-DDTHH:mm:SS.sss;
  • –by-duration <String: duration>:恢复到指定时间的offset,时间格式为:PnDTnHnMnS;
  • –to-earliest:恢复到当前保留的最早offset;
  • –to-latest:恢复到最新的offset;
  • –to-offset <Long: offset>:恢复指定的特殊offset;
  • –topic <String: topic>:指定topic;

2.5.5. 操作案例

2.5.5.1. Topic
# 查看当前已有的Topic(__consumer_offsets为消费者offset存储topic,详见本文1.4.5.2章节内容)
[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --list
__consumer_offsets

# 创建一个名称为hello_test,分区为5,副本为2的Topic
[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --create --topic hello_test --partitions 5 --replication-factor 2
WARNING: Due to limitations in metric names, topics with a period ('.') or underscore ('_') could collide. To avoid issues it is best to use either, but not both.
# 注意:带有句号('.')或下划线('_')的主题可能会发生冲突。为了避免问题,最好使用其中之一,但不要同时使用
Created topic hello_test.
[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --list
__consumer_offsets
hello_test
[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --topic hello_test --describe
Topic: hello_test       TopicId: uo-PiyMRQAOQhGumh6Dmpg PartitionCount: 5       ReplicationFactor: 2    Configs: 
        Topic: hello_test       Partition: 0    Leader: 1       Replicas: 1,2   Isr: 1,2
        Topic: hello_test       Partition: 1    Leader: 0       Replicas: 0,1   Isr: 0,1
        Topic: hello_test       Partition: 2    Leader: 2       Replicas: 2,0   Isr: 2,0
        Topic: hello_test       Partition: 3    Leader: 1       Replicas: 1,0   Isr: 1,0
        Topic: hello_test       Partition: 4    Leader: 0       Replicas: 0,2   Isr: 0,2
# 表头介绍:
# Topic:主题名称
# TopicId:主题ID
# PartitionCount:分区总数
# ReplicationFactor:副本数
# Configs:主题配置
# 数据列:主题名称、分区编号、Leader分区在哪个Broker、副本分布在哪个Broker、ISR列表

# 更新Topic分区为7
[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --alter --topic hello_test --partitions 7
[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --topic hello_test --describe
Topic: hello_test       TopicId: uo-PiyMRQAOQhGumh6Dmpg PartitionCount: 7       ReplicationFactor: 2    Configs: 
        Topic: hello_test       Partition: 0    Leader: 1       Replicas: 1,2   Isr: 1,2
        Topic: hello_test       Partition: 1    Leader: 0       Replicas: 0,1   Isr: 0,1
        Topic: hello_test       Partition: 2    Leader: 2       Replicas: 2,0   Isr: 2,0
        Topic: hello_test       Partition: 3    Leader: 1       Replicas: 1,0   Isr: 1,0
        Topic: hello_test       Partition: 4    Leader: 0       Replicas: 0,2   Isr: 0,2
        Topic: hello_test       Partition: 5    Leader: 0       Replicas: 0,2   Isr: 0,2
        Topic: hello_test       Partition: 6    Leader: 1       Replicas: 1,2   Isr: 1,2

# 删除前面创建好的Topic
[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --delete --topic hello_test
[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --list
__consumer_offsets
2.5.5.2. Producer + Consumer
# 准备环境(3个终端窗口,创建关联topic)
[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --create --topic test001 --partitions 3 --replication-factor 2
Created topic test001.

# 1号窗口代表producer,先输入一些数据
[root@master kafka_cluster]# sh kafka-1/bin/kafka-console-producer.sh --bootstrap-server 127.0.0.1:9092 --topic test001
>111
>222
>333
>444
>

# 2号窗口代表consumer,此时连接后无任何返回
[root@master kafka_cluster]# sh kafka-1/bin/kafka-console-consumer.sh --bootstrap-server 127.0.0.1:9092 --topic test001

# 在1号窗口继续输入
[root@master kafka_cluster]# sh kafka-1/bin/kafka-console-producer.sh --bootstrap-server 127.0.0.1:9092 --topic test001
>111
>222
>333
>444															# consumer连接前输入数据位置
>
>555
>666
>777
>888
>

# 2号窗口自动输出(不包含连接前数据,如测试内数据111-444)
[root@master kafka_cluster]# sh kafka-1/bin/kafka-console-consumer.sh --bootstrap-server 127.0.0.1:9092 --topic test001

555
666
777
888

# 使用3号窗口查看历史数据,需要携带参数--from-beginning
[root@master kafka_cluster]# sh kafka-1/bin/kafka-console-consumer.sh --bootstrap-server 127.0.0.1:9092 --topic test001 --from-beginning
111
222
333
444

555
666
777
888
# 此时不要关闭3号窗口,保留consumer存在,继续进行Consumer group相关操作
2.5.5.3. Consumer group
# 查看消费者组
[root@master kafka_cluster]# sh kafka-1/bin/kafka-consumer-groups.sh --bootstrap-server 127.0.0.1:9092 --list
console-consumer-11605

# 查看详细信息
[root@master kafka_cluster]# sh kafka-1/bin/kafka-consumer-groups.sh --bootstrap-server 127.0.0.1:9092 --group console-consumer-11605  --describe

GROUP                  TOPIC           PARTITION  CURRENT-OFFSET  LOG-END-OFFSET  LAG             CONSUMER-ID                                           HOST            CLIENT-ID
console-consumer-11605 test001         0          -               0               -               console-consumer-401f8ac4-932d-4a18-97ea-45677d9d2f2d /9.134.244.180  console-consumer
console-consumer-11605 test001         1          -               9               -               console-consumer-401f8ac4-932d-4a18-97ea-45677d9d2f2d /9.134.244.180  console-consumer
console-consumer-11605 test001         2          -               0               -               console-consumer-401f8ac4-932d-4a18-97ea-45677d9d2f2d /9.134.244.180  console-consumer
# 表头介绍:
# GROUP:消费者组的名称
# TOPIC:消费者组订阅的主题名称
# PARTITION:主题的分区编号
# CURRENT-OFFSET:消费者组当前的偏移量(offset),即该分区下一个将要被消费的消息的偏移量
# LOG-END-OFFSET:该分区最新一条消息的偏移量
# LAG:消费者组滞后的消息数量,即当前的偏移量与最新一条消息的偏移量之间的差值
# CONSUMER-ID:消费者客户端的唯一标识符
# HOST:消费者客户端所在的主机名称或 IP 地址

2.5.4. 分区与副本调整

# 准备topic
[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --create --topic hello_test --partitions 2 --replication-factor 2
WARNING: Due to limitations in metric names, topics with a period ('.') or underscore ('_') could collide. To avoid issues it is best to use either, but not both.
Created topic hello_test.
[root@master kafka_cluster]# ./kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --topic hello_test --describe
Topic: hello_test       TopicId: hQ7vPPgRQF2XEwhRSxO7nA PartitionCount: 2       ReplicationFactor: 2    Configs: 
        Topic: hello_test       Partition: 0    Leader: 0       Replicas: 1,0   Isr: 0,1
        Topic: hello_test       Partition: 1    Leader: 0       Replicas: 0,2   Isr: 0,2
        
# 编辑需要修改的topic(注意文件内容为json格式)
[root@master kafka_cluster]# vim topic_change.json
{"topics":[{"topic":"hello_test"}],"version":1}

# 使用重新分配分区脚本生成分配计划
[root@master kafka_cluster]# ./kafka-1/bin/kafka-reassign-partitions.sh --bootstrap-server 127.0.0.1:9092 --topics-to-move-json-file ./topic_change.json --generate --broker-list "0,1,2"
Current partition replica assignment									# 当前分区配置
{"version":1,"partitions":[{"topic":"hello_test","partition":0,"replicas":[1,0],"log_dirs":["any","any"]},{"topic":"hello_test","partition":1,"replicas":[0,2],"log_dirs":["any","any"]}]}

Proposed partition reassignment configuration					# 推荐的分区配置
{"version":1,"partitions":[{"topic":"hello_test","partition":0,"replicas":[1,2],"log_dirs":["any","any"]},{"topic":"hello_test","partition":1,"replicas":[2,0],"log_dirs":["any","any"]}]}

# 将推荐的分配计划保存在本地新文件内
[root@master kafka_cluster]# vim replication-factor.json 
{"version":1,"partitions":[{"topic":"hello_test","partition":0,"replicas":[1,2],"log_dirs":["any","any"]},{"topic":"hello_test","partition":1,"replicas":[2,0],"log_dirs":["any","any"]}]}

# 使用重新分配分区脚本执行分配计划
[root@master kafka_cluster]# ./kafka-1/bin/kafka-reassign-partitions.sh --bootstrap-server 127.0.0.1:9092 --reassignment-json-file ./replication-factor.json --execute
Current partition replica assignment

{"version":1,"partitions":[{"topic":"hello_test","partition":0,"replicas":[1,0],"log_dirs":["any","any"]},{"topic":"hello_test","partition":1,"replicas":[0,2],"log_dirs":["any","any"]}]}

Save this to use as the --reassignment-json-file option during rollback
Successfully started partition reassignments for hello_test-0,hello_test-1			# 成功启动分区标识

# 验证分配计划是否执行成功
[root@master kafka_cluster]# ./kafka-1/bin/kafka-reassign-partitions.sh --bootstrap-server 127.0.0.1:9092 --reassignment-json-file ./replication-factor.json --verify
Status of partition reassignment:
Reassignment of partition hello_test-0 is completed.														# 重新分配分区完成标识
Reassignment of partition hello_test-1 is completed.

Clearing broker-level throttles on brokers 0,1,2
Clearing topic-level throttles on topic hello_test

# 查看topic详情
[root@master kafka_cluster]# ./kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --topic hello_test --describe
Topic: hello_test       TopicId: hQ7vPPgRQF2XEwhRSxO7nA PartitionCount: 2       ReplicationFactor: 2    Configs: 
        Topic: hello_test       Partition: 0    Leader: 1       Replicas: 1,2   Isr: 1,2
        Topic: hello_test       Partition: 1    Leader: 0       Replicas: 2,0   Isr: 0,2
2.5.4.1. 分区扩容
[root@master kafka_cluster]# ./kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --topic hello_test --describe
Topic: hello_test       TopicId: hQ7vPPgRQF2XEwhRSxO7nA PartitionCount: 2       ReplicationFactor: 2    Configs: 
        Topic: hello_test       Partition: 0    Leader: 1       Replicas: 1,2   Isr: 1,2
        Topic: hello_test       Partition: 1    Leader: 0       Replicas: 2,0   Isr: 0,2

# 使用topic脚本可以直接扩容分区,但不支持缩容(缩容需要使用分配计划修改)
[root@master kafka_cluster]# ./kafka-1/bin/kafka-topics.sh --alter --bootstrap-server 127.0.0.1:9092 --topic hello_test --partitions 8
[root@master kafka_cluster]# ./kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --topic hello_test --describe
Topic: hello_test       TopicId: hQ7vPPgRQF2XEwhRSxO7nA PartitionCount: 8       ReplicationFactor: 2    Configs: 
        Topic: hello_test       Partition: 0    Leader: 1       Replicas: 1,2   Isr: 1,2
        Topic: hello_test       Partition: 1    Leader: 0       Replicas: 2,0   Isr: 0,2
        Topic: hello_test       Partition: 2    Leader: 0       Replicas: 0,2   Isr: 0,2
        Topic: hello_test       Partition: 3    Leader: 1       Replicas: 1,2   Isr: 1,2
        Topic: hello_test       Partition: 4    Leader: 2       Replicas: 2,0   Isr: 2,0
        Topic: hello_test       Partition: 5    Leader: 0       Replicas: 0,1   Isr: 0,1
        Topic: hello_test       Partition: 6    Leader: 1       Replicas: 1,0   Isr: 1,0
        Topic: hello_test       Partition: 7    Leader: 2       Replicas: 2,1   Isr: 2,1
2.5.4.2. 副本扩容
# 生成分配计划
[root@master kafka_cluster]# ./kafka-1/bin/kafka-reassign-partitions.sh --bootstrap-server 127.0.0.1:9092 --topics-to-move-json-file ./topic_change.json --generate --broker-list "1,2"
Current partition replica assignment
{"version":1,"partitions":[{"topic":"hello_test","partition":0,"replicas":[1,2],"log_dirs":["any","any"]},{"topic":"hello_test","partition":1,"replicas":[2,0],"log_dirs":["any","any"]},{"topic":"hello_test","partition":2,"replicas":[0,2],"log_dirs":["any","any"]},{"topic":"hello_test","partition":3,"replicas":[1,2],"log_dirs":["any","any"]},{"topic":"hello_test","partition":4,"replicas":[2,0],"log_dirs":["any","any"]},{"topic":"hello_test","partition":5,"replicas":[0,1],"log_dirs":["any","any"]},{"topic":"hello_test","partition":6,"replicas":[1,0],"log_dirs":["any","any"]},{"topic":"hello_test","partition":7,"replicas":[2,1],"log_dirs":["any","any"]}]}

Proposed partition reassignment configuration
{"version":1,"partitions":[{"topic":"hello_test","partition":0,"replicas":[2,1],"log_dirs":["any","any"]},{"topic":"hello_test","partition":1,"replicas":[1,2],"log_dirs":["any","any"]},{"topic":"hello_test","partition":2,"replicas":[2,1],"log_dirs":["any","any"]},{"topic":"hello_test","partition":3,"replicas":[1,2],"log_dirs":["any","any"]},{"topic":"hello_test","partition":4,"replicas":[2,1],"log_dirs":["any","any"]},{"topic":"hello_test","partition":5,"replicas":[1,2],"log_dirs":["any","any"]},{"topic":"hello_test","partition":6,"replicas":[2,1],"log_dirs":["any","any"]},{"topic":"hello_test","partition":7,"replicas":[1,2],"log_dirs":["any","any"]}]}

# 保存分配计划
[root@master kafka_cluster]# vim replication-factor.json  
{"version":1,"partitions":[{"topic":"hello_test","partition":0,"replicas":[2,1,0],"log_dirs":["any","any","any"]},{"topic":"hello_test","partition":1,"replicas":[1,2,0],"log_dirs":["any","any","any"]},{"topic":"hello_test","partition":2,"replicas":[2,1,0],"log_dirs":["any","any","any"]},{"topic":"hello_test","partition":3,"replicas":[1,2,0],"log_dirs":["any","any","any"]},{"topic":"hello_test","partition":4,"replicas":[2,1,0],"log_dirs":["any","any","any"]},{"topic":"hello_test","partition":5,"replicas":[1,2,0],"log_dirs":["any","any","any"]},{"topic":"hello_test","partition":6,"replicas":[2,1,0],"log_dirs":["any","any","any"]},{"topic":"hello_test","partition":7,"replicas":[1,2,0],"log_dirs":["any","any","any"]}]}

# 立即执行
[root@master kafka_cluster]# ./kafka-1/bin/kafka-reassign-partitions.sh --bootstrap-server 127.0.0.1:9092 --reassignment-json-file ./replication-factor.json --execute
Current partition replica assignment

{"version":1,"partitions":[{"topic":"hello_test","partition":0,"replicas":[1,2],"log_dirs":["any","any"]},{"topic":"hello_test","partition":1,"replicas":[2,0],"log_dirs":["any","any"]},{"topic":"hello_test","partition":2,"replicas":[0,2],"log_dirs":["any","any"]},{"topic":"hello_test","partition":3,"replicas":[1,2],"log_dirs":["any","any"]},{"topic":"hello_test","partition":4,"replicas":[2,0],"log_dirs":["any","any"]},{"topic":"hello_test","partition":5,"replicas":[0,1],"log_dirs":["any","any"]},{"topic":"hello_test","partition":6,"replicas":[1,0],"log_dirs":["any","any"]},{"topic":"hello_test","partition":7,"replicas":[2,1],"log_dirs":["any","any"]}]}

Save this to use as the --reassignment-json-file option during rollback
Successfully started partition reassignments for hello_test-0,hello_test-1,hello_test-2,hello_test-3,hello_test-4,hello_test-5,hello_test-6,hello_test-7

# 验证结果
[root@master kafka_cluster]# ./kafka-1/bin/kafka-reassign-partitions.sh --bootstrap-server 127.0.0.1:9092 --reassignment-json-file ./replication-factor.json --verify
Status of partition reassignment:
Reassignment of partition hello_test-0 is completed.
Reassignment of partition hello_test-1 is completed.
Reassignment of partition hello_test-2 is completed.
Reassignment of partition hello_test-3 is completed.
Reassignment of partition hello_test-4 is completed.
Reassignment of partition hello_test-5 is completed.
Reassignment of partition hello_test-6 is completed.
Reassignment of partition hello_test-7 is completed.

Clearing broker-level throttles on brokers 0,1,2
Clearing topic-level throttles on topic hello_test

# 查看详情
[root@master kafka_cluster]# ./kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --topic hello_test --describeTopic: hello_test       TopicId: hQ7vPPgRQF2XEwhRSxO7nA PartitionCount: 8       ReplicationFactor: 3    Configs:         Topic: hello_test       Partition: 0    Leader: 1       Replicas: 2,1,0 Isr: 1,2,0        Topic: hello_test       Partition: 1    Leader: 0       Replicas: 1,2,0 Isr: 0,2,1
        Topic: hello_test       Partition: 2    Leader: 0       Replicas: 2,1,0 Isr: 0,2,1
        Topic: hello_test       Partition: 3    Leader: 1       Replicas: 1,2,0 Isr: 1,2,0
        Topic: hello_test       Partition: 4    Leader: 2       Replicas: 2,1,0 Isr: 2,0,1
        Topic: hello_test       Partition: 5    Leader: 0       Replicas: 1,2,0 Isr: 0,1,2
        Topic: hello_test       Partition: 6    Leader: 1       Replicas: 2,1,0 Isr: 1,0,2
        Topic: hello_test       Partition: 7    Leader: 2       Replicas: 1,2,0 Isr: 2,1,0

2.5.5. 消息积压清理

使用Kafka自带的测试工具进行测试。

# 创建一个测试topic
[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --create --topic test --partitions 5 --replication-factor 2
Created topic test.

# 生产者
[root@master kafka_cluster]# sh kafka-1/bin/kafka-producer-perf-test.sh --topic test --num-records=100000000 --producer-props bootstrap.servers=127.0.0.1:9092 batch.size=10000 --throughput -1 --record-size 100
1502928 records sent, 300585.6 records/sec (28.67 MB/sec), 566.8 ms avg latency, 1350.0 ms max latency.
~
100000000 records sent, 555632.726768 records/sec (52.99 MB/sec), 538.13 ms avg latency, 3616.00 ms max latency, 489 ms 50th, 824 ms 95th, 1240 ms 99th, 3300 ms 99.9th.																									# 传输完成标识,展示了每秒发送的消息数、吞吐量、平均延时,以及几个分位数,重点关注末尾的分位数,3300 ms 99.9th表示99.9%的消息延时都在3300 ms之内
# --num-records=100000000:将要发送的消息数量
# batch.size=10000:批处理大小
# --throughput -1:设置生产者的期望吞吐量。"-1"表示生产者将尽可能快地发送消息
# --record-size 100:每条消息的大小为100字节

# 消费者
[root@master kafka_cluster]# sh kafka-1/bin/kafka-consumer-perf-test.sh --topic test --broker-list 127.0.0.1:9092 --messages=100000000 --num-fetch-threads 1 --fetch-size=1000
WARNING: option [threads] and [num-fetch-threads] have been deprecated and will be ignored by the test
start.time, end.time, data.consumed.in.MB, MB.sec, data.consumed.in.nMsg, nMsg.sec, rebalance.time.ms, fetch.time.ms, fetch.MB.sec, fetch.nMsg.sec
2023-08-30 19:33:27:781, 2023-08-30 19:36:27:457, 9536.7437, 53.0774, 100000014, 556557.4367, 351, 179325, 53.1813, 557646.8089																																														# 完成标识
# --messages=100000000:指定测试消息的总数
# --num-fetch-threads 1:指定拉取消息的线程数为1个
# --fetch-size=1000:指定每次拉取消息的大小为1000字节

# 查看消息积压
[root@master kafka_cluster]# sh kafka-1/bin/kafka-consumer-groups.sh  --bootstrap-server 127.0.0.1:9092 --list
perf-consumer-63840
[root@master kafka_cluster]# sh kafka-1/bin/kafka-consumer-groups.sh  --bootstrap-server 127.0.0.1:9092 --describe --group perf-consumer-99520

GROUP               TOPIC           PARTITION  CURRENT-OFFSET  LOG-END-OFFSET  LAG             CONSUMER-ID                                               HOST            CLIENT-ID
perf-consumer-99520 test            0          3596220         4426920         830700          perf-consumer-client-f7810e67-2129-44e4-aabd-1f1789119c04 /9.134.244.180  perf-consumer-client
perf-consumer-99520 test            1          3104236         4129066         1024830         perf-consumer-client-f7810e67-2129-44e4-aabd-1f1789119c04 /9.134.244.180  perf-consumer-client
perf-consumer-99520 test            4          3104522         4129172         1024650         perf-consumer-client-f7810e67-2129-44e4-aabd-1f1789119c04 /9.134.244.180  perf-consumer-client
perf-consumer-99520 test            3          3596115         4426905         830790          perf-consumer-client-f7810e67-2129-44e4-aabd-1f1789119c04 /9.134.244.180  perf-consumer-client
perf-consumer-99520 test            2          5437555         5465005         27450           perf-consumer-client-f7810e67-2129-44e4-aabd-1f1789119c04 /9.134.244.180  perf-consumer-client
# LAG越大积压越多

# 恢复到最新的offset,LAG = 0,未消费的数据将直接被放弃消费,从最新offset继续开始进行消费
[root@master kafka_cluster]# sh kafka-1/bin/kafka-consumer-groups.sh --bootstrap-server 127.0.0.1:9092 --group perf-consumer-99520 --reset-offsets --topic test --to-latest --execute

GROUP                          TOPIC                          PARTITION  NEW-OFFSET     
perf-consumer-99520            test                           0          25377165       
perf-consumer-99520            test                           1          27216340       
perf-consumer-99520            test                           4          27214992       
perf-consumer-99520            test                           3          25377341       
perf-consumer-99520            test                           2          32609516       
[root@master kafka_cluster]# sh kafka-1/bin/kafka-consumer-groups.sh  --bootstrap-server 127.0.0.1:9092 --describe --group perf-consumer-99520

Consumer group 'perf-consumer-99520' has no active members.

GROUP               TOPIC           PARTITION  CURRENT-OFFSET  LOG-END-OFFSET  LAG             CONSUMER-ID     HOST            CLIENT-ID
perf-consumer-99520 test            0          25377165        25377165        0               -               -               -
perf-consumer-99520 test            1          27216340        27216340        0               -               -               -
perf-consumer-99520 test            4          27214992        27214992        0               -               -               -
perf-consumer-99520 test            3          25377341        25377341        0               -               -               -
perf-consumer-99520 test            2          32609516        32609516        0               -               -               -

2.5.6. 重选选举Leader主分区

[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --describe --topic test
Topic: test     TopicId: 2_bqk7HcTzWIDNAqkNondQ PartitionCount: 5       ReplicationFactor: 2    Configs: 
        Topic: test     Partition: 0    Leader: 1       Replicas: 1,2   Isr: 1,2
        Topic: test     Partition: 1    Leader: 0       Replicas: 0,1   Isr: 0,1
        Topic: test     Partition: 2    Leader: 2       Replicas: 2,0   Isr: 2,0
        Topic: test     Partition: 3    Leader: 1       Replicas: 1,0   Isr: 1,0
        Topic: test     Partition: 4    Leader: 0       Replicas: 0,2   Isr: 0,2

# 指定topic与partition
[root@master kafka_cluster]# sh kafka-1/bin/kafka-leader-election.sh --bootstrap-server 127.0.0.1:9092 --topic test --partition 1 --election-type preferred
Valid replica already elected for partitions test-1
# "preferred"或者"unclean"分别表示优先选举副本、或者允许选举副本状态不一致的节点作为Leader

# 使用json文件
[root@master kafka_cluster]# cat replica-election.json 
{"partitions": [{"topic": "test","partition": 0},{"topic": "test001","partition": 1}]}

[root@master kafka_cluster]# sh kafka-1/bin/kafka-leader-election.sh --bootstrap-server 127.0.0.1:9092 --path-to-json-file ./replica-election.json --election-type UNCLEAN
Valid replica already elected for partitions test-1, test-0

2.6. 报错记录

2.6.1. 创建topic时报错

[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --create --topic test --partitions 5 --replication-factor 2
Error while executing topic command : Replication factor: 2 larger than available brokers: 1.
[2023-08-31 11:35:06,656] ERROR org.apache.kafka.common.errors.InvalidReplicationFactorException: Replication factor: 2 larger than available brokers: 1.

出现这样情况是因为kafka的节点只有1个,但是备份却大于1个,查看zk下/kafka/brokers/ids时发现只有[0],ids缺失1和2,重启Kafka服务解决该问题。

2.6.2. 使用工具时直接返回参数列表

这种情况一般都是命令参数使用错误导致,需要查看参数列表重新配置工具参数进行使用。

2.6.3. 未知的选项

[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --broker-list 127.0.0.1:9092 --topic test --describe
Exception in thread "main" joptsimple.UnrecognizedOptionException: broker-list is not a recognized option
        ~

报错提示:broker-list不是一个可以识别的选项,正确参数为–bootstrap-server。

2.6.4. 重置offset时异常

[root@master kafka_cluster]# sh kafka-1/bin/kafka-consumer-groups.sh --bootstrap-server 127.0.0.1:9092 --group perf-consumer-83143 --reset-offsets --topic test001 --to-latest
WARN: No action will be performed as the --execute option is missing.In a future major release, the default behavior of this command will be to prompt the user before executing the reset rather than doing a dry run. You should add the --dry-run option explicitly if you are scripting this command and want to keep the current default behavior without prompting.

Error: Assignments can only be reset if the group 'perf-consumer-83143' is inactive, but the current state is Stable.

GROUP                          TOPIC                          PARTITION  NEW-OFFSET 

该报错是因为消费者组有消费者正在消费,没有关闭,把消费者关闭之后,重新移动指定分区的偏移量即可。

[root@master kafka_cluster]# sh kafka-1/bin/kafka-consumer-groups.sh --bootstrap-server 127.0.0.1:9092 --group perf-consumer-83143 --reset-offsets --topic test --to-latest
WARN: No action will be performed as the --execute option is missing.In a future major release, the default behavior of this command will be to prompt the user before executing the reset rather than doing a dry run. You should add the --dry-run option explicitly if you are scripting this command and want to keep the current default behavior without prompting.

Error: Executing consumer group command failed due to org.apache.kafka.common.errors.UnknownTopicOrPartitionException: This server does not host this topic-partition.
java.util.concurrent.ExecutionException: org.apache.kafka.common.errors.UnknownTopicOrPartitionException: This server does not host this topic-partition.
        ~
Caused by: org.apache.kafka.common.errors.UnknownTopicOrPartitionException: This server does not host this topic-partition.

UnknownTopicOrPartitionException报错是因为topic或partition不存在。

2.6.5. json格式文件工具

参考文章:JSON数据格式与格式化操作详解

2.6.6. Leader重新选举报错

[root@master kafka_cluster]# sh kafka-1/bin/kafka-leader-election.sh --bootstrap-server 127.0.0.1:9092 --topic test --election-type PREFERRED --all-topic-partitions
Exception in thread "main" kafka.common.AdminCommandFailedException: One and only one of the following options is required: topic, all-topic-partitions, path-to-json-file
        ~

该报错是因为–all-topic-partitions参数只能通过–path-to-json-file引入文件进行重新选举操作。

[root@master kafka_cluster]# sh kafka-1/bin/kafka-leader-election.sh --bootstrap-server 127.0.0.1:9092 --path-to-json-file ./replica-election.json --election-type UNCLEAN
Valid replica already elected for partitions test-1, test-0

3、Python连接Kafka

清理环境,避免现象冲突:

[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --list
__consumer_offsets

下载所需python依赖包:kafka-python

pip install kafka-python
pip list

3.1. 生产者

from kafka import KafkaProducer

# 连接kafka
producer = KafkaProducer(bootstrap_servers='9.134.244.180:9092')

msg = 'Hello test!'.encode('utf-8')

for _ in range(100):
    # 发送100条消息到topic ceshi,消息内容为utf-8编码的Hello test!
    producer.send('ceshi',msg)
    producer.flush(timeout=60)		# 重试时间60s
# 关闭连接
producer.close()

运行生产者代码后,查看topic,此时已经创建出来了ceshi topic,代表代码生效,等待代码执行完成即可(提示:进程已结束,退出代码为 0)。

[root@master kafka_cluster]# sh kafka-1/bin/kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --list
__consumer_offsets
ceshi

3.2. 消费者

from kafka import KafkaConsumer

# 连接kafka,topic为ceshi,group为ceshi,消费位置从最小开始(包含历史数据)
consumer = KafkaConsumer(
    'ceshi',
    bootstrap_servers='9.134.244.180:9092',
    group_id='ceshi',
    auto_offset_reset='smallest'
)

for msg in consumer:
    recv = '%s:%d:%d:key=%s,value=%s' %(msg.topic,msg.partition,msg.offset,msg.key,msg.value.decode('utf-8'))
    print(recv)

再执行消费者代码,即可查看到弹出内容:文章来源地址https://www.toymoban.com/news/detail-694567.html

3.3. 执行结果

ceshi:0:188:key=None,value=Hello test!
~
# 应该弹出100次

# 查看消费者组与其消费offset
[root@master kafka_cluster]# sh kafka-1/bin/kafka-consumer-groups.sh --bootstrap-server 127.0.0.1:9092 --list
ceshi
[root@master kafka_cluster]# sh kafka-1/bin/kafka-consumer-groups.sh --bootstrap-server 127.0.0.1:9092 --describe --group ceshi

GROUP           TOPIC           PARTITION  CURRENT-OFFSET  LOG-END-OFFSET  LAG             CONSUMER-ID                                             HOST            CLIENT-ID
ceshi           ceshi           0          100             100             0               kafka-python-2.0.2-90fcfcc8-3049-4628-9783-b880e6cf8800 /10.99.17.133   kafka-python-2.0.2

到了这里,关于Middleware ❀ Kafka功能与使用详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【分布式应用】kafka集群、Filebeat+Kafka+ELK搭建

    主要原因是由于在高并发环境下,同步请求来不及处理,请求往往会发生阻塞。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多,从而触发 too many connection 错误,引发雪崩效应。 我们使用消息队列,通过异步处理请求,从而缓解系统的压力。消息队

    2024年02月16日
    浏览(53)
  • 分布式 - 消息队列Kafka:Kafka 消费者的消费位移

    01. Kafka 分区位移 对于Kafka中的分区而言,它的每条消息都有唯一的offset,用来表示消息在分区中对应的位置。偏移量从0开始,每个新消息的偏移量比前一个消息的偏移量大1。 每条消息在分区中的位置信息由一个叫位移(Offset)的数据来表征。分区位移总是从 0 开始,假设一

    2024年02月12日
    浏览(50)
  • 分布式消息服务kafka

    什么是消息中间件? 消息中间件是分布式系统中重要的组件,本质就是一个具有接收消息、存储消息、分发消息的队列,应用程序通过读写队列消息来通信。 例如:在淘宝购物时,订单系统处理完订单后,把订单消息发送到消息中间件中,由消息中间件将订单消息分发到下

    2024年02月01日
    浏览(48)
  • 分布式 - 消息队列Kafka:Kafka消费者的分区分配策略

    Kafka 消费者负载均衡策略? Kafka 消费者分区分配策略? 1. 环境准备 创建主题 test 有5个分区,准备 3 个消费者并进行消费,观察消费分配情况。然后再停止其中一个消费者,再次观察消费分配情况。 ① 创建主题 test,该主题有5个分区,2个副本: ② 创建3个消费者CustomConsu

    2024年02月13日
    浏览(47)
  • 分布式 - 消息队列Kafka:Kafka生产者架构和配置参数

    生产者发送消息流程参考图1: 先从创建一个ProducerRecord对象开始,其中需要包含目标主题和要发送的内容。另外,还可以指定键、分区、时间戳或标头。在发送ProducerRecord对象时,生产者需要先把键和值对象序列化成字节数组,这样才能在网络上传输。 接下来,如果没有显式

    2024年02月13日
    浏览(50)
  • 分布式 - 消息队列Kafka:Kafka生产者发送消息的方式

    不管是把Kafka作为消息队列、消息总线还是数据存储平台,总是需要一个可以往Kafka写入数据的生产者、一个可以从Kafka读取数据的消费者,或者一个兼具两种角色的应用程序。 Kafka 生产者是指使用 Apache Kafka 消息系统的应用程序,它们负责将消息发送到 Kafka 集群中的一个或多

    2024年02月13日
    浏览(44)
  • 分布式 - 消息队列Kafka:Kafka消费者和消费者组

    1. Kafka 消费者是什么? 消费者负责订阅Kafka中的主题,并且从订阅的主题上拉取消息。与其他一些消息中间件不同的是:在Kafka的消费理念中还有一层消费组的概念,每个消费者都有一个对应的消费组。当消息发布到主题后,只会被投递给订阅它的每个消费组中的一个消费者

    2024年02月13日
    浏览(45)
  • 分布式 - 消息队列Kafka:Kafka 消费者消费位移的提交方式

    最简单的提交方式是让消费者自动提交偏移量,自动提交 offset 的相关参数: enable.auto.commit:是否开启自动提交 offset 功能,默认为 true; auto.commit.interval.ms:自动提交 offset 的时间间隔,默认为5秒; 如果 enable.auto.commit 被设置为true,那么每过5秒,消费者就会自动提交 poll() 返

    2024年02月12日
    浏览(48)
  • 分布式 - 消息队列Kafka:Kafka消费者分区再均衡(Rebalance)

    01. Kafka 消费者分区再均衡是什么? 消费者群组里的消费者共享主题分区的所有权。当一个新消费者加入群组时,它将开始读取一部分原本由其他消费者读取的消息。当一个消费者被关闭或发生崩溃时,它将离开群组,原本由它读取的分区将由群组里的其他消费者读取。 分区

    2024年02月12日
    浏览(40)
  • 分布式 - 消息队列Kafka:Kafka 消费者消息消费与参数配置

    01. 创建消费者 在读取消息之前,需要先创建一个KafkaConsumer对象。创建KafkaConsumer对象与创建KafkaProducer对象非常相似——把想要传给消费者的属性放在Properties对象里。 为简单起见,这里只提供4个必要的属性:bootstrap.servers、key.deserializer 和 value.deserializer。 ① bootstrap.servers 指

    2024年02月12日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包