【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间)

这篇具有很好参考价值的文章主要介绍了【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、SH for Glossy transport

1.Diffuse PRT回顾

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

上篇我们介绍了PRT,并以Diffuse的BRDF作为例子分析了预计算的部分,包括Lighting和Light transport,如上图所示。 包括我们还提到了SH,可以用SH的有限阶近似拟合球面函数,然后计算。

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

这里和上篇的推导方式不太一样,我们上篇是把Lighting项用SH分解然后交换积分和求和符号,最后变成了两个向量的点乘。而这次我们把Lighting项用SH分解,把Light transport项也用SH分解,最后得到了两个求和,以及右边的两个基函数的乘积再积分(product integral) ,感觉不太一样?从O(n)变成了O(n2)?

这里就可以用到SH的性质,正交性,显然两个基函数的product integral的操作正如同把一个基函数投影到另一个基函数上一样,类比于三维空间中把x轴投影到y轴,结果是0,除非是把x轴投影到x轴,那么结果是1,由此我们知道,只有Bp和Bq是相同基函数的情况下,右边这个东西才不等于0而是等于1。

由此也就相当于两个一维向量组成的矩阵,但只有矩阵对角线上有值,那么仍然是O(n),我们的上篇的推导仍然成立。

2.Glossy PRT

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

接下来看Glossy的情况,我们之前说Diffuse的PRT好做是因为,Diffuse的BRDF是一个常数,而Glossy的BRDF显然不是一个常数,它是一个完整的四维的函数。 

这里我们仍然把Lighting投影到SH上,然后把Light transport也投影到SH上,但是最后得到的结果就不是简单的两个向量的点乘了,Ti变成了T(o),原因正是因为BRDF此时不再是常数了,此时任给一个方向o,我们都可以得到一个BRDF和相应的T(o),也就是说,不同的o得到的向量不同,也就是说我们最后得到的不再是一个向量Ti,而是一个函数T(o)。

换个角度理解,我们知道Diffuse的反射是和视角无关的,而Glossy则不同,Glossy和视角方向是有关的,这也符合最后得到的结果L(o)是一个关于观察方向o的函数。 

那我们怎么处理呢?原本的四维被我们投影到二维的SH上变成了二维的Light transport,那我们可不可以再做一次投影呢?答案是可以,只不过这时候transport就不再是一个向量了,而是一个矩阵,如上图所示。最后的结果自然是一个关于观察方向o的函数L(o)了,也就是一个向量。

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

当然Glossy的PRT也有代价,首先是预计算的存储,如果想用前五阶的SH拟合,那就是25*25=625个基函数的计算结果。其次因为不再是向量与向量相乘,而是向量与矩阵相乘,计算的开销也会增加。正常情况下人们通常会用3,4,5阶的SH,相应的高频BRDF使用的阶数就高一些。

对于特别高频的情况(接近镜面反射),一般会采用其它的基函数来投影,因为SH表达高频的效果很差,或者另一种解决思路就是直接采样就可以了,因为镜面反射已经知道了是如何反射的。

3.PRT for Interreflections and Caustics

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

PRT同样可以做Interreflection,也就是自身反射自身的效果。

我们先总结一下传播路径,如上图所示,其中LE表示光源(Light)直接到达眼睛(Eye),LGE自然表示光源(Light)打到Glossy的物体,再进入眼睛(Eye),一个通用的表达L(D|G)*E,因为物体要么是Diffuse的要么是Glossy(Specular可以当作特殊的Glossy)的,*代表可以反射多次,然后进入人的眼睛。

如上图的茶壶所示,在多了一次光线的bounce之后,壶身可以反射到自身的壶嘴,那自然bounce越多反射的也就越多,也就越接近真实的光线传播。

另一种常见的传播路径,Caustics(焦散),通常用LS*(D|G)*E表示,它表示光源先打到Specular也就是非常光滑的表面上,再打到Diffuse物体上再传到眼睛被看到。如上图的金属环。

通过观察我们可以发现任何的Transport path都可以被分成Lighting和Light transport两部分,也就是L和除L外的东西。也就是说无论Light transport多复杂我们都可以用PRT的方式进行预计算。

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

回顾一下Ti项的预计算,我们之前提到了可以把如图中所示的式子当作一种投影,而另一种理解思路,我们发现这个式子很像渲染方程,唯一不同的是Li变成了基函数,那我们可以就可以理解成用这些不同基函数形式的光照去照亮整个物体,如图所示,只不过每个光照会有些奇怪罢了,但是把它们合在一起,仍然是正确的完整的光照。(红色为+,蓝色为-,黑色为0) 

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

对于不同的BRDF,我们只要能把light transport表示出来,都可以通过预计算来实时渲染。即使为如上图所示的右下角的茶壶,不同的位置上有不同的BRDF,此时虽然任何一个顶点的BRDF仍是四维,但整个物体变成了六维的函数,但是我们仍然可以通过PRT计算。 

4.PRT的局限

⦿ 球谐函数只适合于描述低频的函数,描述高频要用很高阶的基函数

⦿ 因为预计算,所以只适用于静态场景。材质,场景都不能发生改变

⦿ 大量的预计算数据需要存储和读取0

二、Wavelet—小波

⦿ Wavelet

⦿ Zonal Harmonics

⦿ Spherical Gaussian (SG)

⦿ Piecewise Constant

事实上,在SH之后,人们研究了许多基函数,用来表示其他函数,如上面所列举的一部分。

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

我们简单介绍其中的一种,Wavelet—小波,并且小波有很多种,这里我们介绍的是2D Haar小波。与SH相同,它也是一系列基函数,但不同的是,SH定义在球面上,而它定义在图像块上,并且不同的小波定义域不同,如图中只有黑白的地方才是定义域,并且小波支持全频率的表示。其次,与SH不同的是,我们用SH近似的时候是取了SH有限阶的基函数去近似,而小波不同,我们把函数投影到小波的每个基函数上,会发现有些基函数的系数接近0,这样我们就可以定义一个系数大小,小于一定值的基函数丢掉就可以了。

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

自然的,由于小波定义在图像块上,那自然不能用Sphere map来做光照,而是改用Cubemap,并且对Cubemap的每张图单独做小波变换,大致思路为一张图划分为四块,左上角存储低频信息,然后其余为高频信息的小波变换保留下来的非0系数项,接着依次不断划分,如上图所示。

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

可以看到,小波还原出来的效果比SH好一些,包括高频的阴影。

但小波有一个缺点,就是它不支持光源的旋转,而不像SH的简单的旋转性质。 

三、Real-Time Global Illumination (in 3D)

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染
[Ritschel et al., The State of the Art in Interactive Global Illumination]

全局光照在真实感渲染中有着举足轻重的作用,如果没有全局光照,场景中会出现许多死黑的地方,所以做全局光照是必然的,回顾我们在GAMES101里的Blinn-Phong模型,它的全局光照是做法是把间接光照ambient当成一个常数,然后假设场景所有地方所受间接光相同并且和Normal也没有任何关系,但显然,这是非常不准确的做法。 

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染
[Image courtesy of Prof. Henrik Wann Jensen]

在实时渲染中,人们指的全局光照中的所谓间接光照,指的就是光线比直接光照多弹射一次的间接光照,而不是弹射很多次的,如上图所示。

Reflective Shadow Maps (RSM)

(1)Idea

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染
[Image courtesy of Prof. Henrik Wann Jensen]

那么回顾我们在GAMES101里面提到的,在P点考虑接受的光照,有从光源接收到的的直接光照那就是光源的直接光照,有从Q点接收到的间接光照,那也就是Q点接收光源的光后反射到自己的光就好像Q点也是一个光源一样。

所以实际上我们并不区分哪些是直接照到的,哪些是反射来的,而是把Q当作次级光源来计算。

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

如上图所示,太阳标记表示被直接光照照到的部分,它们在下一次弹射的时候将被当作次级光源去照亮其它物体。 

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染如上图,p点接收不到光源的直接光照,但可以接收到第一次获得的次级光源的光照,然后被照亮。

(2)Key Observations 

有了思路,我们需要解决中间的一些问题

• 首先,我们怎么知道光源直接照到了哪些地方呢?

显然我们一下就可以想到借助Shadow Map。这个时候从Shadow Map上的每个像素对应的场景中的Area都会被当成次级面光源去照亮点p。

• 其次,我们怎么知道一个次级面光源对着色点(点p)的光照贡献呢

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染
对光源直接采样

我们想到在GAMES101介绍蒙特卡洛积分对半球采样的时候,我们当时说因为会导致浪费许多路径,所以我们改写了渲染方程,把对立体角的积分改成了对光源上面积dA的积分,直接采样光源避免了浪费。而在这里我们同样可以采取这种方法,在p点对所有有贡献的次级光源采样即可。

但这里有一个问题,我们在p点求各个次级光源的贡献,实际上我们是以p点作为了观察点,而不是我们的Camera,所以我们如果不知道出射方向,那就没法计算着色了。但是这里我们会做一个假设,我们假设所有的反射物(reflector)都是Diffuse的,这样就和观测方向没有关系,我们从p点还是从Camera看都是相同的。但注意,我们不需要假设接收物都是也是Diffuse的,也就是说虽然次级光源被我们认为是Diffuse,但是点p并不需要认为是Diffuse的。

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染
对光源面积积分的渲染方程

如上图所示是我们之前提到的改写后的渲染方程,从立体角积分变成了对面积的积分,其实如果我们如果知道了Shadow Map上的一个像素对应的面积就可以直接计算了,不需要积分dA。 现在需要知道的就是,从q点打到p点的Radiance是多少,也就是上图所示的Li(q→p)项。

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

由于之前假设的q点是Diffuse的,那么q点的BRDF就很好求,就是ρ/π ,我们之前推导过。那出射的Radiance自然就是BRDF乘以Irradiance,Irradiance直接用光源的Φ除以单位面积dA就可以了。并且dA可以消掉,于是得到最终的公式结果如上图白框所示。(这里的白框里的公式是Paper的原公式,可以看到闫令琪老师非常自信的把它的4次方改成了2次方,并且说Paper上绝对写的是错的立flag吃键盘,据闫令琪老师说这个错的原因在于无脑加了一次平方衰减,而实际上这个衰减的假设是错的但是实际上Paper里的是正确的,也就是说按照Paper原文这么写确实是4次方,因为分子结果上面有个2次方消掉了,当然闫令琪老师的推导也没有错,究其原因是分子不同导致分母不同。)

这里仍然存在这问题,首先我们发现改写后的渲染方程的Visibility项无法得到,我们不可能对每个次级光源和着色点之间都生成一张Shadow Map来判断可见性,于是人们直接放弃了Visibility项,就认为是可见的。

(3)Tips

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

RSM仍然有一些可以优化的点,比如我们之前提到的次级光源的Visibility项,以及根据法线判断哪些光源根本不可能对着色点有贡献,比如上图的在桌子上的次级光源(x-1,x-2)就不可能对x点有贡献。其次我们之前看到了,改写渲染方程有距离平方衰减项,所以一定距离范围外的次级光源我们自然也没必要考虑,因为太小了。

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

离着色点一定距离范围外的次级光源不考虑?我们自然不能对每个着色点p把Shadow Map上所有次级光源遍历计算距离再排序,再删除,这是很大的工程量,于是有了RSM另外一个大胆的假设。

我们目的是找到在世界坐标下距离着色点p距离近的一些点。于是我们把p点投影到Shadow Map上,然后在Shadow Map上离点p近的像素/深度接近的像素,我们就认为在世界坐标下距离也接近。这样就可以有效的加速这一过程。当然查询可能仍然很慢,我们可以随机采样,至于采样点的选取,采样点的数量,采样的权重分布,这些都可以借鉴PCSS等之前提到过的其它方法,这里因实际情况而有所不同,但我们可以知道的是,这种方法可以有效加速RSM。

(4)Summary【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

RSM相比于普通的Shadow Map多存储了什么呢?那无非是我们之前说思路的时候用到的哪些信息。Depth深度,这是Shadow Map原本就存储的。除此之外还有,世界坐标来判断距离(算Shading的时候需要使用),反射物的法线(计算cos项),光源的辐射通量。

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染
GDC Vault - In-Game and Cinematic Lighting of The Last of Us

RSM的效果被用在手电筒上非常不错,而且因为手电筒覆盖范围较小,不需要太大的RSM,开销比较小 。

【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间),GAMES202高质量实时渲染,图形渲染,计算机图形学,全局光照,学习笔记,实时渲染

RSM的优点是比较容易实现,因为它本身其实就是Shadow Map。

那缺点也很容易想到,Shadow Map有的缺点它也有。有多少个直接光源就需要多少个RSM,所以多光源开销大。 其次我们说了,无法考虑Visibilty项,于是不考虑,所以不够真实。还有,RSM做了很多假设包括:反射物都是Diffuse,SM近似的世界空间坐标距离,这些都会对渲染质量有一定影响。最后RSM的采样率和质量的平衡问题,这是所有采样方法都有的问题。

参考

GAMES202_Lecture_07 (ucsb.edu)

Lecture7 Real-time GLobal Illumination (in 3D)_哔哩哔哩_bilibili文章来源地址https://www.toymoban.com/news/detail-694753.html

到了这里,关于【GAMES202】Real-Time Global Illumination(in 3D)—实时全局光照(3D空间)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 3D Gaussian Splatting for Real-Time Radiance Field Rendering 阅读笔记

    感谢B站意の茗的讲解。 论文地址:https://arxiv.org/abs/2308.04079 项目主页:https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/ 从已有点云模型出发(sfm),以每个点为中心建立可学习的3D高斯表达,Splatting方法进行渲染,实现高分辨率实时渲染。(推动NERF加速方向) 能用训练好的点云

    2024年01月16日
    浏览(51)
  • 论文笔记《3D Gaussian Splatting for Real-Time Radiance Field Rendering》

    项目地址 原论文 最近辐射场方法彻底改变了多图/视频场景捕获的新视角合成。然而取得高视觉质量仍需神经网络花费大量时间训练和渲染,同时最近较快的方法都无可避免地以质量为代价。对于无边界的完整场景(而不是孤立的对象)和 1080p 分辨率渲染,目前没有任何方法

    2024年02月09日
    浏览(43)
  • 【读论文】3D Gaussian Splatting for Real-Time Radiance Field Rendering

    What kind of thing is this article going to do (from the abstract and conclusion, try to summarize it in one sentence) To simultaneously satisfy the requirements of efficiency and quality, this article begins by establishing a foundation with sparse points using 3D Gaussian distributions to preserve desirable space. It then progresses to optimizing anisotrop

    2024年04月09日
    浏览(46)
  • 【论文笔记】3D Gaussian Splatting for Real-Time Radiance Field Rendering

    原文链接:https://arxiv.org/abs/2308.04079 网孔和点是最常见的3D场景表达,因其是显式的且适合基于GPU/CUDA的快速栅格化。神经辐射场(NeRF)则建立连续的场景表达便于优化,但渲染时的随机采样耗时且引入噪声。本文的方法结合了上述两种方法的优点:使用3D高斯表达和基于ti

    2024年02月04日
    浏览(43)
  • 【语音增强论文解读 03】TCNN: TEMPORAL CONVOLUTIONAL NEURAL NETWORK FOR REAL-TIME SPEECHENHANCEMENT IN THE TIME

    作者:Ashutosh Pandey and DeLiang Wang 文末附文章地址及其开源代码地址         尽管使用 T-F 表示是最流行的方法,但它也有一些缺点。首先,这些方法通常忽略干净的相位信息,并使用噪声相位进行时域信号重建。         受成功实现用于序列建模的 TCNN 以及基于编解码

    2024年02月02日
    浏览(46)
  • [SIGGRAPH-23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering

    pdf | proj | code 本文提出一种新的3D数据表达形式3D Gaussians。每个Gaussian由以下参数组成:中心点位置、协方差矩阵、可见性、颜色。通过世界坐标系到相机坐标系,再到图像坐标系的仿射关系,可将3D Gaussian映射到相机坐标系,通过对z轴积分,可得到对应Splatting 2D分布。 针对

    2024年02月04日
    浏览(49)
  • 3D Gaussian Splatting for Real-Time Radiance Field Rendering(论文中代码复现)

    3D Gaussian Splatting for Real-Time Radiance Field Rendering https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/ 主要研究方法是使用3D高斯光点绘制(3D Gaussian Splatting)方法进行实时光辐射场渲染。该方法结合了3D高斯场表示和实时可微分渲染器,通过优化3D高斯场的属性和密度控制,实现了高质

    2024年02月03日
    浏览(49)
  • 3DGS 其一:3D Gaussian Splatting for Real-Time Radiance Field Rendering

    Reference: 深蓝学院:NeRF基础与常见算法解析 GitHub: gaussian-splatting 原文官网 A Survey on 3D Gaussian Splatting 开始弃用NeRF?为什么Gaussian Splatting在自动驾驶场景如此受欢迎? 相关文章: NeRF 其一:NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis NeRF 其二:Mip-NeRF NeRF 其三:In

    2024年01月18日
    浏览(75)
  • 【论文阅读--实时语义分割】PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller

    论文链接 : https://arxiv.org/pdf/2206.02066.pdf github :https://github.com/XuJiacong/PIDNet 双分支网络结构已显示出其对实时语义分割任务的效率性和有效性。然而,低级细节和高级语义的直接融合将导致细节特征容易被周围上下文信息淹没,即本文中的超调 (overshoot),这限制了现有两个分

    2024年02月09日
    浏览(54)
  • BiSeNet:用于实时语义分割的双边分割网络——BiSeNet:Bilateral Segmentation Network for Real-time Semantic Segmentation

            语义分割需要丰富的空间信息和较大的感受野。然而,现代的方法通常为了实现实时推断速度而牺牲空间分辨率,导致性能下降。本文提出了一种新的双边分割网络(BiSeNet)来解决这个问题。我们首先设计了一个具有小步长的空间路径来保留空间信息并生成高分

    2024年04月28日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包